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Modelling Reactive Systems

* Interaction with the environment: reactive to
events

« Autonomous behaviour: timeouts +
spontaneous transitions

» System behaviour: modes (hierarchical) +
concurrent units

* Use programmlng language + threads and
s (0S)?

ontr/wa/ software written with threads, semaphores, and
, mutexes are incomprehensible to humans”

E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.




Modelling Reactive Systems

E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.
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State Diagrams
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* All states are explicitly represented (unlike Petrinets, for example)
* Flat representation (no hierarchy)

* Does not scale well: becomes too large too quickly to be usable (by
humans)
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https://cs.uwaterloo.ca/~jmatlee/Talks/Parnas0l.pdf


https://cs.uwaterloo.ca/~jmatlee/Talks/Parnas01.pdf

Mealy and Moore Machines

FSA: (Q, 90, >, O, &, A)

Moore Machines Mealy Machines

* Qutput only depends on current * Qutput depends on current state
state. and on current input.
A Q —» O A Qx> = O

* Input stream: 00 = * Input stream: 00 =

Output stream: 111 Output stream: 11

https://www.geeksforgeeks.org/mealy-and-moore-machines/



https://www.geeksforgeeks.org/mealy-and-moore-machines/

FSAs: Expressiveness 2| RO,
P NP V7
S
- N '“
s N )
[ Combinational logic )
\ Finite-state machine /
\ Pushdown automaton /
\Turing Machine Y,

* Can be made Turing-complete
— data memory, control flow, branching

* Extend FSAs
— borrow semantics from Mealy and Moore machines

https://en.wikipedia.org/wiki/Finite-state_machine



https://en.wikipedia.org/wiki/Finite-state_machine

Higraphs

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.
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David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.
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Euler Diagrams
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David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.




Higraphs

Euler Diagrams Unordered Cartesian Product
All A are B. No A is B. Some A isin B. Some A is not in 5. B
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- topological notions for set union, difference, intersection A=B®C
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e C
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e C
d S
\ e f g
b ¢ *h Hyperedges: S 2* (undirected), & 2* x2* (directed).
1
X={a b, .., h
a graph a hypergraph {a, b, ..., h}

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.




Higraphs
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David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.
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Higraphs: Examples
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Higraphs: Examples
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Higraphs: Formal Definition

* A higraph H is a quadruple
H = (B, E, o,m
* B is a finite set of all unique blobs
* E is a set of hyperedges
C 2B X 2B
* The subblob function o
o: B — 28

0o(x) = {x}, "W = U oy, & =Y

yeE(x



Higraphs: Formal Definition

* Subblobs relation cycle-free
X & 0+(X)

* The partitioning function m associates an equivalence
relationship with x

m: B = 2BxB
* Equivalence classes m; are orthogonal components of x
m1(X), T2(X), ..., M (X)
* kK, = 1 means a single orthogonal component
* Blobs in different orthogonal components of x are
disjoint
Vvy,z € o(x) : ot(y)No+(z) = O



Higraphs Applications

* Apply syntactic constructs to an existing modelling
language.

« Add specific meaning to these constructs.

 Examples:
* E-R diagrams
» Dataflow/Activity Diagrams
* Inheritance
- Statecharts
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Statecharts

* Visual (topological, not geometric) formalism
* Precisely defined syntax and semantics

* Many uses:
 Documentation (for human communication)
- Aratyststofbehaviodratproperties)
* Simulation
* Code synthesis

... and derived, such as testing, optimization, ...
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Statecharts History

* Introduced by David Harel in 1987

* Notation based on higraphs = hypergraphs + Euler
diagrams + unordered Cartesian product

 Semantics extends deterministic finite state automata
with:
* Depth (Hierarchy)
* Orthogonality
* Broadcast Communication
* Time
* History
* Syntactic sugar, such as enter/exit actions

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, pages 231-274




Statecharts History

* Incorporated in UML: State Machines (1995)

* More recent: xUML for semantics of UML subset
(2002)

« W3 Recommendation: State Chart XML (SCXML)
(2015)
https://www.w3.org/TR/scxml/

 Standard: Precise Semantics for State Machines
(2019)

https://www.omg.org/spec/PSSM/



https://www.omg.org/spec/PSSM/

Statechart (Variants) Tools

STATEMATE: A Working Environment for the
Development of Complex Reactive Systems

software

https://www.ibm.com/us-en/marketplace/systems-design-rhapsody .

W ENEs] Simulink Stateflow

e https://www.mathworks.com/products/stateflow.html

i Ptolem9 I \ &
0 YAKINDU staTECHART TooLS
11.0

https://www.itemis.com/en/yakindu/state-machine/

" . e (etrice.
ol PAPYRUS
PN _

—EAL TINME

https://www.eclipse.org/papyrus-rt/

https://www.eclipse.org/etrice/

Bran Selic, Garth Gullekson,
and P3 Vard



https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://www.eclipse.org/papyrus-rt/
https://www.itemis.com/en/yakindu/state-machine/
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody
https://www.mathworks.com/products/stateflow.html
https://www.eclipse.org/etrice/
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Running Example
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What are we developing?

Environment

Controller <K<sense>>

(Deployed) Statecharts
Model

* Turn on/off traffic lights (red/green/yellow)
* Display counter value (three-digit)

* Change counter colour (red/green)

* Sense button presses

* Autonomous (timed) behaviour
* Interrupt logic
* Orthogonal (traffic light/timer) behaviour
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Workflow

@—| :GatherRegs |

] | :ModelSystem |

:ReviseSystem

GatherReqgs

Verify System

Text. Req.
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ReviseSystem

ModelSystem

[ :Definelnput J [:DefineTestCasesJ
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:Simulate | ( :Test Hn|
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( )
:Run
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O automatic transformation (:) automatic activity :CheCkOUtpUt “Boolean
[False True}>~(®)

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In
European Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. FTG+PM: An Integrated Framework for Investigating Model
Transformation Chains. System Design Languages Forum (SDL) 2013, Montreal, Quebec. LNCS Volume 7916, pp 182-202, 2013.
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R3: at system start-up, the red light is on

R4: cycles through red on, green on, and yellow or
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turned on again
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Requirements

« R1: three differently coloured lights: red, green, yellow

* R2: at most one light is on at any point in time
* R3: at system start-up, the red light is on
* R4: cycles through red on, green on, and yellow on

* R5: red is on for 60s, green is on for 55s, yellow is on for 5s
* R6: time periods of different phases are configurable.

* R7: police can interrupt autonomous operation
* Result = blinking yellow light (on -> 1s, off -> 15s)

* R8: police can resume an interrupted traffic light
* Result = light which was on at time of interrupt is turned on
again
* R9: traffic light can be switched on and off and restores its state
* R10: a timer displays the remaining time while the light is red or

green; this timer decreases and displays its value every second.
The colour of the timer reflects the colour of the traffic light.



\

\rt Tools

rts made easy...



What are YAKINDU Statechart Tools?

YAKINDU Statechart Tools provides an integrated

modeling environment for the specification and

development of reactive, event-driven systems
based on the concept of statecharts.

L Editing -
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heating R regin

interface :

in event onOff
in event tempDrop

var tempSetPoint : integer

Validation

| buinsa] g uone|nWIs

Code Generation




The Statecharts Language



States

[<<name>>]

being in a state

= state <<name>> is
active

= the system is in
configuration <<name>>

<<name>>]

initial state

exactly one per
model

“entry point”
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* Model the dynamics of the system:
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Transitions

‘ A I event(params) / output_action(params)

* Model the dynamics of the system:
* jf
* the system is in state A
* and event is processed
* then
1. output_action is evaluated
2. and the new active state is B




Transitions: Events

event(in_params) / output_action(out_params)
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event(in_params) / output_action(out_params)

 Spontaneous | A I B \
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Transitions: Events

event(in_params) / output_action(out_params)

 Spontaneous | A I B \
queue of event notices
e
* Input Event A ! I B \ .+ €3 € €5
|

processing
|




Transitions: Events

event(in_params) / output_action(out_params)

 Spontaneous | A
* Input Event

queue of event notices

D
D LT
D

processmg
I

. After Event ater(10)




Transitions: Events

event(in_params) / output_action(out_params)

 Spontaneous | A

queue of event notices

processing
|

queue of event notices

. After Event ater(10)

€5 €,

* Input Event I \ -+ €3 €1 €5
A

A t; & t

processing
|



Transitions: Events

event(in_params) / output_action(out_params)

 Spontaneous | A

* Input Event

o After Event

after(10)

O
5

D
—{(=
D

queue of event notices

. €3 €; €5
|

processing
|

queue of event notices

€5 €,

[ b tz t, t;
proce;ssmg ‘

<<when triggered>>:




Transitions: Events

event(in_params) / output_action(out_params)

 Spontaneous | A

* Input Event

o After Event

after(10)

O
5

D
—{(=
D

queue of event notices

. €3 €; €5
|

processing
|

queue of event notices

te,; €3 €; IS,

[ b tz t, t;
proce;ssmg ‘

<<when triggered>>: <<insert event>>




Transitions: Events

event(in_params) / output_action(out_params)

 Spontaneous | A

* Input Event

o After Event

after(10)

O
5

D
—{(=
D

queue of event notices

€3 €; €5
A

processing
|

queue of event notices

te; €3 €,

[ b t3 &
processing
|

<<when triggered>>: <<insert event>>
<<remove timer>>



Transitions: Raising Output Events

event(in_params) / output_action(out_params)

Syntax for output action:

after(55) / ~displayYellow MNoutput_event

means “raise the event output_event (to the environment)”



Exercise 1 - Requirements o~ (Es)

|M:Statecharts| [Te

|:ModeISvstem |

viseSystem |
Verify System

* R1: three differently coloured lights:
red (R), green (G), yellow (Y)
 R2: at most one light is on at any point in time
« R3: at system start-up, the red light is on
* R4: cycles through red on, green on, and yellow on
* R5: red is on for 60s, green is on for 55s, yellow is
on for 5s

Your model here.

(Simulated) Plant Environment

<<co ntroI>>‘




Exercise 1 - Solution - ()

|M:Statecharts| [Te

| :ModelSystem |

viseSystem |
Verify System

/ ~displayRed

N
m * R1: three differently coloured lights:
red (R), green (G), yellow (Y)
after(60) / ~displayGreen  R2: at most one light is on at any point in time
after(5)/ | R3: at system start-up, the red light is on
~displayRe

« R4: cycles through red on, green on, and yellow on
R5: red is on for 60s, green is on for 55s, yellow

Green :
is on for 5s

(Simulated) Plant Environment
after(55) / ~displayYellow

__j




b Exercise 1 - Solution

after 55s
/ raise displayYellow

Yellow

after 5 s
/ raise displayRed

modelling approach

R1: three differently coloured For each colour a state is defined. Transitions
lights: red (R), green (G), yellow that lead to a state raise the proper out event
(Y) which interacts with the plant.

R2: at most one light is on at any The states are all contained in a single region
point in time and thus a exclusive to each other (“or” states).

R3: at system start-up, the red The entry node points to state Red and the
light is on entry transition raises the event displayRed.

R4: cycles through red on, green

The transitions define this cycle.
on, and yellow on

R5: red is on for 60s, green is on

for 55s, yellow is on for 5s Time events are specified on the transitions.



Data Store



Full System State

[<<name>>]

being in a state

= state <<name>> is
active

= the system is in
configuration <<name>>




Full System State

[<<name>>] 4

DataStore

- vary: t; = valy
- var,: t, = val,

- var,: t, = val,

being in a state

= state <<name>> is
active

= the system is in
configuration <<name>>

data store snapshot
= variable values




Full System State

[<<name>>]

DataStore

- vary: t; = valy
- var,: t, = val,

- var,: t, = val,

being in a state

= state <<name>> is
active

= the system is in
configuration <<name>>

data store snapshot
= variable values

full system state




Full System State: Initialization

<<name>>]

initial state

exactly one per
model

“entry point”




Full System State: Initialization

DataStore
- vary: t; = valy
<<name>> - vary: t, = val,
- var,: t, = val,
initial state provide default
exactly one per  Vvalue for each
model variable

“entry point” “Iinitial snapshot”




Full System State: Initialization

<<name>>]

DataStore

- vary: t; = valy
- var,: t, = val,

- var,: t, = val,

1 int main() {
2

3}

initial state

exactly one per
model

“entry point”

provide default
value for each
variable

“Initial snapshot”

Compare:
C++ initialization
implicit state
(program counter)
+ data store




Transitions: Guards
event(in_params) [guard] / output_action(out_params)

Modelled by “guard expression” (evaluates to
Boolean) in some appropriate language



Transitions: Guards
event(in_params) [guard] / output_action(out_params)

Modelled by “guard expression” (evaluates to
Boolean) in some appropriate language

* Spontaneous [True] | A I B |




Transitions: Guards
event(in_params) [guard] / output_action(out_params)

Modelled by “guard expression” (evaluates to
Boolean) in some appropriate language

* Spontaneous [True] | A I B |
DataStore

- Data Store | A It, =5l I B | - Van: :1 - Val'l
Variable Value - var: f = vab

- var,: t, = val,




Transitions: Guards
event(in_params) [guard] / output_action(out_params)

Modelled by “guard expression” (evaluates to
Boolean) in some appropriate language

* Spontaneous [True] | A I B |
DataStore

- Data Store | A It, == I B | - Van: :1 - Val'l
Variable Value - var: f = vab

- var,: t, = val,

e(p,, ..., p,) [P, <5 && p, == “a”]
« Parameter Value A -~ B



Transitions: Output Actions

event(params) [guard] / output_action(params)



Transitions: Output Actions

event(params) [guard] / output_action(params)

Output Event

~output _event(pi, Pz, ..., Pn)

| Green

after(55) / ~displayYellow

| Yellow




Transitions: Output Actions

event(params) [guard] / output_action(params)

Output Event

~output _event(pi, Pz, ..., Pn)

| Green

after(55) / ~displayYellow TrafficLight 0
timer: int
<<behaviour>>
timer=0
vellow g
after(1) / timer += 1

=
I

Ll
|

awn

Assignment (to the non-
modal part of the state)

* by action code in some
appropriate language

timer| 0 | :

timer| 1 | :

TrafficLight|

timer| 2 | -




Transitions

5

* Model the dynamics of the system:




Transitions

5

* Model the dynamics of the system:
* jf




Transitions

K

* Model the dynamics of the system:
* jf
* the system is in state A




Transitions

‘ A I event(params)

* Model the dynamics of the system:
* jf
* the system is in state A
* and event is processed




Transitions

‘ A I event(params) [guard]

* Model the dynamics of the system:

* If
* the system is in state A
* and event is processed
* and guard evaluates to True



Transitions

‘ A I event(params) [guard]

* Model the dynamics of the system:

* If

* the system is in state A

* and event is processed

* and guard evaluates to True
* then



Transitions

‘ A I event(params) [guard] / output_action(params)

* Model the dynamics of the system:
* If
* the system is in state A
* and event is processed
* and guard evaluates to True
* then
1. output_action is evaluated




Transitions

‘ A I event(params) [guard] / output_action(params)

* Model the dynamics of the system:

* jf
* the system is in state A
* and event is processed
* and guard evaluates to True

* then
1. output_action is evaluated
2. and the new active state is B




Exercise 2

Add data stores



Exercise 2 - Requirements o~ (Es)
[M:Statecharts| w@

viseSystem |
Verify System

(e

 R6’: During the last 6 seconds of red being
on, the traffic light announces to go to
green by blinking its yellow light (1s on, 1s
off) while leaving its red light on.

* R6: The time period of the different phases
should be configurable.

Your model here.

TrafficLight

- counter: Integer =0

- green: Boolean = false
- red: Boolean = false

- yellow: Boolean = false




Exercise 2 - Requirements o~ (Es)

|M:Statecharts| [Te

| :ModelSystem |

viseSystem |
Verify System

 R6’: During the last 6 seconds of red being
on, the traffic light announces to go to
green by blinking its yellow light (1s on, 1s
off) while leaving its red light on.

* R6: The time period of the different phases
should be configurable.

Your model here.

TrafficLight Make sure that:
- counter: Integer = 0 = the values of the variables reflect
- green: Boolean = false which lights are on/off
- red: Boolean = false = you use at least one conditional
- yellow: Boolean = false transition

<<behavior>>




Exercise 2: Solution - ()

/ red = true

-

<

after(5) /
Red red = true

after(54) /
yellow = true

¥ after(1) /
yellow = false

Prep_Y ‘aﬁg"rﬂ;e}*:l Prep_B

— yellow = true

[counter == 3]/
green = true; yellow = false;
red = false; counter = 0

Green

.4

after(55) / green = false ; yellow = true

|M:Statecharts| [Te

| :ModelSystem |

viseSystem |
Verify System

 R6’: During the last 6 seconds of red being
on, the traffic light announces to go to
green by blinking its yellow light (1s on, 1s
off) while leaving its red light on.

* R6: The time period of the different phases
should be configurable.

TrafficLight

Y
| Yellow

- counter: Integer =0

- green: Boolean = false
- red: Boolean = false

- yellow: Boolean = false




Exercise 2: Solution - ()

|M:Statecharts| [Te

| :ModelSystem |

viseSystem |
Verify System

/ red = true

-

<

after(5) /
Red red

after(54) /
yellow = true

¥ after(1) /
yellow = false

counter +=1
Pre p_Y _after(1) /
— yellow = true

[counter == 3]/
green = true; yellow = false;
red = false; counter = 0

Green

.4

after(55) / green = false ; yellow = true

= true

Prep_

Y
| Yellow

 R6’: During the last 6 seconds of red being
on, the traffic light announces to go to
green by blinking its yellow light (1s on, 1s
off) while leaving its red light on.

* R6: The time period of the different phases
should be configurable.

TrafficLight

- counter: Integer =0

- green: Boolean = false
- red: Boolean = false

- yellow: Boolean = false

<<behavior>>




Statechart Execution



Run-To-Completion Step

A Run-To-Completion (RTC) step is an atomic
execution step of a state machine.

It transitions the state machine from a valid state
configuration into the next valid state configuration.

RTC steps are executed one after the other - they
must not interleave.

New incoming events cannot interrupt the processing
of the current event and must be stored in an event
queue



Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {




Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events initialize queue()
output_events = initialize_queue()
timers initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial_value

}




Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events initialize queue()
output_events = initialize_queue()
timers initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial_value

}
while (not finished()) {




Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events initialize queue()
output_events = initialize_queue()
timers initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial_value

}
while (not finished()) {

curr_event = input_events.get()
enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)




Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events initialize queue()
output_events = initialize_queue()
timers = initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial_value

}
while (not finished()) {

curr_event = input_events.get()
enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
chosen_transition = choose_one_transition(enabled_transition)




Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events = initialize queue()
output_events = initialize_queue()
timers = initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial_value

w M

(93]

J

}
while (not finished()) {

curr_event = input_events.get()
enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
chosen_transition = choose_one_transition(enabled_transition)

1

curr_state = chosen_transition.target




Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events = initialize queue()
output_events = initialize_queue()
timers = initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial_value

w M

(93]

J

}
while (not finished()) {

curr_event = input_events.get()
enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
chosen_transition = choose_one_transition(enabled_transition)

1

curr_state = chosen_transition.target
chosen_transition.action.execute(sc.variables, output_events)




Flat Statecharts: Simulation Algorithm (1)

chosen_transition = choose_one_transition(enabled_transition)
cancel_timers(curr_state, timers)

curr_state = chosen_transition.target
chosen_transition.action.execute(sc.variables, output_events)
start_timers(curr_state, timers)

1 simulate(sc: Statechart) {

2 input_events = initialize queue()
3 output_events = initialize_queue()
4 timers = initialize_set()

5 curr_state = sc.initial_state

6 for (var in sc.variables) {

7 var.value = var.initial_value

8 }

9 while (not finished()) {
10 curr_event = input_events.get()
11 enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)

J

=
=
- 2




=

v B ow N

[4)]

Flat Statecharts: Simulation Algorithm (2)

simulate(sc: Statechart) {
input_events = initialize_queue()

output_events

timers

initialize_queue()
initialize_set()

curr_state = sc.initial_state
for (var in sc.variables) {
var.value = var.initial_value

}

while (not finished()) {
curr_event = input_events.get()
while (not quiescent()) {

enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
chosen_transition = choose_one_transition(enabled_transition)
cancel_timers(curr_state, timers)

curr_state = chosen_transition.target

chosen_transition.action.execute(sc.variables, output_events)
start_timers(curr_state, timers)




Flat Statecharts: Simulation Algorithm (3)

1 simulate(sc: Statechart) {

2 input_events = initialize_queue()

3 output_events = initialize_queue()

4 timers = initialize_set()

5 curr_state = sc.initial_state

6 for (var in sc.variables) {

7 var.value = var.initial_value

8 }

9 while (not finished()) {
16 curr_event = input_events.get()
11 enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
12 while (not quiescent()) {
13 chosen_transition = choose_one_transition(enabled_transition)
14 cancel timers(curr_state, timers)
15 curr_state = chosen_transition.target
16 chosen_transition.action.execute(sc.variables, output_events)
17 start_timers(curr_state, timers)
18 enabled_transitions = find_enabled_transitions(curr_state, sc.variables)
19 }
20 }

21}




Testing Statecharts



Testing Statecharts

Generator System Under Study = Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.




Testing Statecharts

k [low_fuel_detected()] /
(mOVi ng Y\ ~low_fuel

key_up / K I fuel

Amove_up eyfdowdn / OW_ ue

~Amove_down
a — [fuel_ok()] ]
Generator _j [Iow_f:jel_detected()]/ _j Acce ptOI’
~ow_fuel
after(3s) -

key_down / key_enter /
\_ ~move_down A\ shoot

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.




Testing Statecharts

Phasel

k [low_fuel_detected()] /
(mOVi ng Y\ ~low_fuel

after(1) / ~ key_enter

k
Aer;lgcgfup key_down / low_fuel
Amove_down [fuel_ok()] ]
—— Tlow_fuel_detected()] / —j Acce ptor
Phasez after(?’s)/\lowjuel

key_down / key_enter /
\_ ~move_down A\ shoot

after(4) / ~key_up

|

Phase3

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.




Testing Statecharts

Phasel

=8
l

[IN(moving)]

Phasel

[(Buirowr)

k [low_fuel_detected()] /
(mOVi ng Y\ ~low_fuel

Phase?2

after(1) / ~ key_enter

o
. =+
Aer:]/gss /up key_down / low_fuel 3
- ~move_down [fuel_ok()] ] shoot \>
_7) [low_fuel_detected()]/ —] ; ¢
A
after(3s) low_fuel

Phase?2
Phase3

key_down / key_enter /
\_ ~move_down A\ shoot

(p)1aye |

after(4) / “key_up move_up

|

pass

Phase3

fail

20

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.




\b, 5‘6

SCTUnit (beta)

« X-unit testing framework for YAKINDU Statechart Tools

* Test-driven development of Statechart models

* Test generation for various platforms

 Executable in YAKINDU Statechart Tools

* Virtual Time

Finished after 0,013 seconds

Runs: 1/1 B Errors: 0 B Failures: 0

-

v Fi org.yakindu.sct.LightSwitchTest [Runner: JUnit 4] (0,001 s)
eelinitialStatelsOff (0,001 s)

testclass LightSwitchTest for statechart Light Switch{
@Test
operation initialStateIsOff(){
enter
assert active(Light Switch.main_region.Off)

}
}




* Has a unique name

« Has a reference to a
statechart

 Contains one or more
operations

Light_Switch

interface:

operation
opl(paraml :
integer):void

operation
guardOp():boolean

in event operate

in event toFinal

Testclass

testclass for statechart @ {

main region

after 30s

°

off |
entry/ &

\op1(5)

guardOp == false]

Oon|

tolla

operate



b Testsuite

testsui TestSuite {
someTestc

}

* Has a unique name
* A testsuite contains at least one reference to a testclass



b Operation

testclass someTestclass for statechart Light Switch {

}

 May have @Test or @Run annotation
Has a unigue name

May have 0..n parameters

Has a return type (standard is void)
Contains 0..n statements



b Expressions

// entering / exiting the statechart

enter, exit
// raising an event

raise event : value

// proceeding time or cycles
proceed 2 cycle
proceed ms

// asserting an expression, expression must evaluate to boolean

assert expression
// is a state active

active(someStatechart.someRegion.someState)



b Mocking Statements

SCTUnit allows to
* mock operations defined in the statechart model
 verify that an operation was called with certain values

// mocking the return value of an operation
mock mockOperation returns (20)
mock mockOperation(5) returns (30)

// verifying the call of an operation
assert called verifyOperation
assert called verifyOperation with (5, 10)



Control Structures

// if expression // while expression
if (x==5){ while (x==5) {

doSomething() doSomething()
} else { )

doSomethingelse()



Test-Driven Development

» Software development process, where software is
developed driven by tests

 Test-first-approach

» 3 steps you do repeatedly:
* writing a test

« implementing the logic
 refactoring / o \

Test failed

est Implementin
succeeded P g
‘_/




Exercise 3

Testing Models



Exercise 3 — Unit testing Statecharts

) =D

TT: TraceLang

=8
gu JUnit £3 =
®. TrafficLightCtrl.sct 53

B v }/—[False]—
(%] 2] -
& & o® &1 BE E-
% . .
» Statechart TrafficLightCtrl TrafficLightTests
b , 4 .
main — Runs: B Errors: B Failures: _
¥ ﬁTrafficLightTests Fail
{ raise displayRed E] switchTrafficLightOn
| o I E switchLightFromRedToGrean =
1= . E lightCycles ST
m._
after redPeriod s
{ raise displayGreer
Gree
‘ > Coverage 53 EE M %= 0
F. Model Element Covera ge
e ¥|  Statechart TrafficLightCtrl ﬂ(ﬁ]
/ raise displayYellow 'u_a Region main WB]
¥ 5 State Red 100 % (2)
—» Red -= Green (after 100 % (1)
Yellow .
¥ § State Green WZJ
after yellowPeriod s — Green -> Yellow (a0 (1)
/! raise displayRed . -
¥ 8 |State Yellow U3 ) —
— Ysll_cw -> Red (aftel ga i"

* Create a test that checks the following requirements:
* R3: at system start-up, the red light is on
* R4: cycles through red on, green on, and yellow on

* R5: red is on for 60s, green is on for 55s, yellow is
on for 5s



Exercise 3 — Solution

J Crest)

package trafficlight.test
t False}——
testclass TrafficlightTests for statechart TrafficLightCtrl { :] 5 ase
@Test operation switchTrafficLightOn () {

[/ given the traffic light is inactive

assert lis active

{{ when

enter

// then traffic light is off which means no color was switched on
assert displayRed

assert !displayGreen

@Test operation lightCycles () {

assert !displayYellow ff given
} switchLightFromYellowTcRed
var 1 : integer = 18

@Test operation switchLightFromRedToGreen () {
while (i > 8) {

/7 given i=i-1
switchTrafficLightOn
/¢ when / fwhen
proceed G@s proceed 52 s
// then // then
assert displayGreen assert displayGreen
¥ y
{/when
proceed 55 s
@Test operation switchLightFromGreenToYellow () { {/ then
assert displayYellow
ff given -
switchLightFromRedToGreen / fwhen
[/ when proceed 5 s
proceed 55s [/ then
[/ then assert displayRed
assert displayYellow 1
¥ b

{@iTest operation switchLightFromyellowToRed () {

// given
switchLightFromGreenToYellow
/f when

proceed 5s

[/ then

assert displayRed



Hierarchy



Entry/Exit Actions

A state can have entry and exit actions.

An entry action is executed whenever a state is entered
(made active).

An exit action is executed whenever a state is exited
(made inactive).

Same expressiveness as transition actions (i.e., syntactic sugar).

/ red = true
/ ~displayRed
N after(5) /
Red red = true
after(54) /
yellow = true
¥ after(1) /
after(60) / ~displayGreen yellow = false
=1
after(5) / Pre Y counter + PI"e B
~displayRed p— after(1) / p_

yellow = true
[counter == 3]/

G reen green = true; yellow = false;

red = false; counter = 0

after(55) / ~displayYellow Green

.‘

after(55) / green = false ; yellow = true
Yellow [—
Yellow !



Entry/Exit Actions

A state can have entry and exit actions.

An entry action is executed whenever a state is entered
(made active).

An exit action is executed whenever a state is exited
(made inactive).

Same expressiveness as transition actions (i.e., syntactic sugar).

Red
entry / ~displayRed

/ red = true

Red after(5) /

red = true

after(54) /
yellow = true

after(1) /

after(60) yellow = false
after(s) Prep_Y | o7 ™" | Prep_B
yellow = true
G reen [counter == 3]/

green = true; yellow = false;

A
entry / “displayGreen red = false; counter = 0

after(55) Green

after(55) / green = false ; yellow = true

Yellow

entry / ~displayYellow
Yellow

.‘




Entry/Exit Actions

A state can have entry and exit actions.

An entry action is executed whenever a state is entered
(made active).

An exit action is executed whenever a state is exited
(made inactive).

Same expressiveness as transition actions (i.e., syntactic sugar).

Red after(5)
Red entry / red = true
entry / ~displayRed
after(54)
* after(1)
after(60) Prep Y counter += 1
after(5) entry / yellow = true after(1) Pre p_B
exit / yellow = false
Green [counter == 3]/
entry / ~NdisplayGreen red = false; counter = 0
¥
Green
after(55) entry / green = true

exit / green = false

after(55)

Yellow

entry / ~displayYellow

Yellow

entry / yellow = true
exit / yellow = false




Transitions

5

* Model the dynamics of the system:
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* Model the dynamics of the system:
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* Model the dynamics of the system:
* if
* the system is in state A
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‘ A I event(params)

* Model the dynamics of the system:
* if
* the system is in state A
* and event is processed
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‘ A I event(params) [guard]

* Model the dynamics of the system:

* if
* the system is in state A
* and event is processed
* and guard evaluates to true



Transitions

‘ A I event(params) [guard]

* Model the dynamics of the system:

* if

* the system is in state A

* and event is processed

* and guard evaluates to true
* then
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‘ A I event(params) [guard]

* Model the dynamics of the system:
* if
* the system is in state A
* and event is processed
* and guard evaluates to true
* then
1. the exit actions of state A are evaluated




Transitions

‘ A I event(params) [guard]

* Model the dynamics of the system:

* |f
* the system is in state A
* and event is processed
* and guard evaluates to true

* then
1. the exit actions of state A are evaluated
2. and output_action is evaluated




Transitions

‘ A I event(params) [guard] / output_action(params)

* Model the dynamics of the system:

* |f
* the system is in state A
* and event is processed
* and guard evaluates to true

* then
1. the exit actions of state A are evaluated
2. and output_action is evaluated

3. and the enter actions of state B are
evaluated




Transitions

‘ A I event(params) [guard] / output_action(params)

* Model the dynamics of the system:

* jf
* the system is in state A
* and event is processed
- and guard evaluates to true

* then
1. the exit actions of state A are evaluated
2. and output_action is evaluated
3. and the enter actions of state B are evaluated
4. the new active state is B




Entry/Exit Actions: Simulation Algorithm

1  simulate(sc: Statechart) {

2 input_events = initialize queue()

3 output_events = initialize queue()

4 timers = initialize set()

5 curr_state = sc.1initial state

6 for (var in sc.variables) {

7 var.value = var.initial value

8 ¥

9 while (not finished()) {
10 curr_event = input events.get()
11 enabled transitions = find_enabled transitions(curr_state, curr_event, sc.variables)
12 while (not quiescent()) {
13 chosen_transition = choose _one transition(enabled transition)
14 cancel timers(curr state, timers)

5 execute exit actions(curr_state)

6 curr_state = chosen_transition.target
17 chosen transition.action.execute(sc.variables, output events)
18 execute enter actions(curr_state)
19 start_timers(curr_state, timers)
20 enabled transitions = find_enabled transitions(curr_state, sc.variables)
21 1
22 I
23}



Hierarchy

» Statechart states can be hierarchically (de-)composed
* Each hierarchical state has exactly one initial/default state

* An active hierarchical state has exactly one active child
(down to leaf/atomic state)
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» Statechart states can be hierarchically (de-)composed
* Each hierarchical state has exactly one initial/default state
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Hierarchy

» Statechart states can be hierarchically (de-)composed
* Each hierarchical state has exactly one initial/default state

* An active hierarchical state has exactly one active child
(down to leaf/atomic state)

Semantics/Meaning?
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Hiearchy: Modified Example

Statemate, Yakindu, ...
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Hiearchy: Modified Example

Statemate, Yakindu, ...

-
-
e

brminism/!

Rhapsody, ...




Hiearchy: Modified Example

Statemate, Yakindu, ...




Hiearchy: why inner? ... see Code Generation



Composite States

Refactoring support: group states into a composite state

1 : 2 i
without composite with composite

bekiing | h——v-a—n—?
2

| open_door l
' 1_.
switch door_open
switch

i
open_door
a P ‘

toasting

hieating

baking

swribch
swiitch

toasting

Hierarchical states are an ideal mechanism for hiding complexity
Parent states can implement common behaviour for their substates

Hierachical event processing reduces the number of transitions

open_door

-

door ﬂpen.




Hierarchy: Initialization

* Concept of effective target state

* Recursive: the effective target
state of a composite state is its
Initial state

« Effective target state of initial
transition is Y/X/A
* |Initialization:
1. EnterY, execute enter action
2. Enter X, execute enter action
3. Enter A, execute enter action




Hierarchy: Transitions




Hierarchy: Transitions

(K z) * Assume Z/W/C is active and e
Y) is processed.
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Hierarchy: Transitions
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Hierarchy: Transitions
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Hierarchy: Transitions

(K z) °* Assume Z/W/C is active and e
Y) is processed.
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@ « Semantics:
X
(4
o
N/
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Hierarchy: Transitions

(K z) °* Assume Z/W/C is active and e
Y) is processed.

g
@ « Semantics:
X
(4
o
N/

1. Find LCA, collect states to
leave

2. Leave states up the
hierarchy

L




Hierarchy: Transitions

« Assume Z/W/C is active and e
IS processed.

* Semantics:

1. Find LCA, collect states to
leave

2. Leave states up the
hierarchy




Hierarchy: Transitions

« Assume Z/W/C is active and e
IS processed.
* Semantics:

1. Find LCA, collect states to
leave

2. Leave states up the
hierarchy

3. Execute action act




Hierarchy: Transitions

I

2.
3.
. Find effective target state set,

« Assume Z/W/C is active and e is
processed.

* Semantics:
1.

Find LCA, collect states to
leave

Leave states up the hierarchy
Execute action act

enter states down the
hierarchy



Hierarchy: Transitions
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« Assume Z/W/C is active and e is
processed.

* Semantics:
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2.
3.
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Find LCA, collect states to
leave

Leave states up the hierarchy
Execute action act

enter states down the
hierarchy



Hierarchy: Transitions

I

2.
3.
. Find effective target state set,

« Assume Z/W/C is active and e is
processed.

* Semantics:
1.

Find LCA, collect states to
leave

Leave states up the hierarchy
Execute action act

enter states down the
hierarchy



Hierarchy: Transitions

I

2.
3.
. Find effective target state set,

« Assume Z/W/C is active and e is
processed.

* Semantics:
1.

Find LCA, collect states to
leave

Leave states up the hierarchy
Execute action act

enter states down the
hierarchy



Hierarchy: Transitions

2.
3.
4.

« Assume Z/W/C is active and e is
processed.

* Semantics:
1.

Find LCA, collect states to
leave

Leave states up the hierarchy
Execute action act

Find effective target state set,
enter states down the
hierarchy

Effective target states:

480

RECURSIVE!



Exercise 5

Model an
Interruptible traffic light



Exercise 5 - Requirements o~(Gatrer

[M:Statecharts|
| :ModelSysi

main :ReviseSystem
o
7 l Verify Sysi

: d
entry / rals%.displayaed ! !

after redPeriod sl : /@
Green '
entry / raise TrafficLight.displayGreen 0

after greenPeriod s
after yellowPeriod s

Yellow
entry / raise TrafficLight.displayYellow

R7a: police can interrupt autonomous operation .

R7b: autonomous operation can be interrupted during any phase of constant red, yellow
and green lights.

R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz

(on 0.5s, off 0.5s).

R8a: police can resume to regular autonomous operation.

R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.



Exercise 5: Solution o (Catherne

[M:Statecharts|

(:ModetSys
R7a: police can interrupt autonomous operation . :ReviseSystem
R7b: autonomous operation can be interrupted during any phase ‘(jIJ—‘IE’SE
of constant red, yellow and green lights. ——

R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz
(on 0.5s, off 0.5s).

R8a: police can resume to regular autonomous operation.

R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.

4 normal

N

4 interrupted

police_interrupt

police_interrupt




Exercise 5: Solution

R7a: police can interrupt autonomous operation .
R7b: autonomous operation can be interrupted during any phase

of constant red, yellow and green lights.
R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz

(on 0.5s, off 0.5s).

R8a: police can resume to regular autonomous operation.
R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.

el
/ displayRed

a/

Green

-

after(60) / displayGreen

after(55) / displayYellow

Yellow [—

4 normal

after(5) /
displayRed

police_interrupt

police_interrupt

interrupted

® :GatheLRE

[M:Statecharts|
| :ModelSysi

:ReviseSystem
Verify Sysi

-




Exercise 5: Solution

R7a: police can interrupt autonomous operation .

R7b: autonomous operation can be interrupted during any phase

of constant red, yellow and green lights.
R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz

(on 0.5s, off 0.5s).

R8a: police can resume to regular autonomous operation.
R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.

el
/ displayRed

a/

Green

-

after(60) / displayGreen

after(55) / displayYellow

Yellow [—

4 normal

after(5) /

police_interrupt

4 interrupted

/ displayYellow

Yellow |=<

displayRed

police_interrupt

after(1) /
after(1) / displayYellow
displayNone

- J

® :GatheLRE

[M:Statecharts|

| :ModelSysi

:ReviseSystem

Verify Sysi



main

Exercise 5 - Solution

normal

'

)
normal interrupted

police_interrupt

o blinking
>
® ®

' \ !

Red )\
Yellow

entry / raise TrafficLight.displayRed

"after redperiod sl

entry / raise... Black

entry / raise TrafficLight.displayYellow

after greenPeriod sl

< entry / raise TrafficLight.displayYellow

afterlSOO ms afterTSOO ms
Green

entry / raise TrafficLight.displayNone

police_interrupt

after yellowPeriod $

Yellow

R6: police can interrupt autonomous operation.

R6a: autonomous operation can be interrupted during
any phase of constant red, yellow and green lights.

R7: in interruptetd mode the yellow light blinks with a
constant frequency of 1 Hz. (on 0.5s, off 0.5s).
R8: police can resume to regular autonomous operation.

R8a: when regular operation is resumed the traffic light
restarts with red (R) light on.

An new incoming event police interrupt triggers a
transition to a new state interrupted.

The states Red, Green, and Yellow are grouped within
a new composite state normal. This state is the source
state of the transition to state interrupted and thus also
applies to all substates.

State interrupted is a composite state with two
substates Yellow and Black. These switch the yellow
light on and off. Timed transitions between these states
ensure correct timing for blinking.

A transition triggered by police_interrupt leads from
state interrupted to state normal.

When activating state normal its substate Red is
activated by default.



History



History: pseudo-states (H) shallow history (%) deep history
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History: pseudo-states (H) shallow history (%) deep history
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 Assume Z/Y/X/B is active,
and m is processed

» Effective target state: E

* If h_s is processed

» Effective target state:
Z/Y/D




History: pseudo-states (H) shallow history (%) deep history

4 7

 Assume Z/Y/X/B is active,
and m is processed

» Effective target state: E

* If h_s is processed

» Effective target state:
Z/Y/D

* If h_d is processed




History: pseudo-states (H) shallow history (%) deep history

4 7

 Assume Z/Y/X/B is active,
and m is processed

» Effective target state: E

* If h_s is processed
» Effective target state:
Z/Y/D
* If h_d is processed

» Effective target state:
Z/Y/X/B




History: pseudo-states (H) shallow history (%) deep history

/

 Assume Z/Y/X/B is active,
and m is processed

» Effective target state: E

* If h_s is processed
» Effective target state:
Z/Y/D
* If h_d is processed

» Effective target state:
Z/Y/X/B

Effective target states:

) (80 (0m)y

RECURSIVE!




Exercise 6

Model an interruptible
traffic light that restores
Its state



Exercise 6: Requirements

:ReviseSystem
Verify ﬁ

* R8b: when regular operation is resumed the traffic light restarts
with the last active light color red (R), green (G), or yellow (Y) on.

normal ] interrupted

ice_interrupt

normal police_ . blinking

® ®
L Ao !

entry / raise TrafficLight.displayRed

- &
after redPeriod sl

Green

)
entry / raise... O Black
L entry / raise TrafficLight.displayNone
- -
after greenPeriod sl police_interrupt .

after yellowPeriod $

Yellow
entry / raise TrafficLight.displayYellow

Yellow )
O entry / raise TrafficLight.displayYellow
/&/ afterl‘;ﬂ() ms afterT‘)OO ms

.—-1 :GatheLRe

[M:Statecharts|

(:ModelSys!

-



Exercise 6: Solution o (Catherne

[M:Statecharts|

(:ModelSys!

:ReviseSystem
Verify Sysi
——

* R8b: when regular operation is resumed the traffic light restarts
with the last active light color red (R), green (G), or yellow (Y) on.



Exercise 6: Solution

R8b: when regular operation is resumed the traffic light restarts
with the last active light color red (R), green (G), or yellow (Y) on.

N

-~

normal

/ ~displayRed

after(60) / ~displayGreen

after(55) / ~displayYellow

-

police_interrupt

4 interrupted

/ ~displayYellow

Yellow <

after(5) /
~displayRed

Green

police_interrupt

after(1) /
after(1) / ~displayYellow
~displayNone

o
®/

!

- J

o— :Gatheite

[M:Statecharts|

| :ModelSysi

:ReviseSystem

Verify Sysi



Exercise 7

Model an interruptible
traffic light that restores
Its state and can be
switched on/off



Exercise 7: Requirements o (Gatherme

[M:Statecharts|
(:ModelSys!

:ReviseSystem
Add another level of hierarchy that supports switching '(IIJ_@
on and off the entire traffic light. Go into detail with

shallow and deep histories. o

* R9: The traffic light can be switched on and off.

* R9a: The traffic light is initially off.

* R9Db: If the traffic light is off none of its lights (R/G/Y) are on.

* RO9c: After switching off and on again the traffic light must
switch on the light that was on before the switching off.

nnnnnn | pf
normal I ;O police_i p blinking
Red . O lllll w
ffi layRed
w7l TER A EALMARS . 0/ entry / fficLight.displayYell
fter redPeriod sl O :
aft: l m ft T m:
Grex
ry / lack
®entry / raise TrafficLight.displayNone
after greenPeriod s o] rrupt //
after O
ellow h
ry / raise TrafficLight.displayYellow




Exerc

Ise 7: Solution

on )

/

W

Green

police_interrupt

normal
~displayRed
N
4 interrupted
/ ~displayYellow
after(60) / ~displayGreen Yel IOW -
police_interrupt
after(5) / >
after(1) / ~displayYellow

~displayNone

after(55) / ~displayYellow

Black

Yellow —

®

\A

.

toggle / ~displayNone

v o

toggle

toggle_history

NS

Kil

Off



Exercise 7: Alternative Solution

¢ é normal on’)

®
/ ~displayRed

N
4 . interrupted \
/ ~displayYellow
after(60) / ~displayGreen I Ye”OW )
police_interrupt toggle / ~displayNone
after(5) / > 99 payrone .

~displayRed after(1) / Oﬂ'—'
after(1) / “displayYellow toggle
~displayNone NS

Green

police_interrupt
after(55) / ~displayYellow Black
\ J
Yellow —
®< O toggle_history
J

-




Orthogonality



Orthogonal Components/Regions: “and” states

main

L/ X YO

A @\

5 i

1 h

¥ Y

B | b |
\ 5 J



Orthogonal Components/Regions: “and” states

Semantics/Meaning?

main
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Orthogonal Components/Regions: “and” states
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Orthogonal Components/Regions:

Semantics/Meaning?

u OX

CARTESIAN PRODUCT \}‘

Effective target states:

“and” states

| @8 (=

RECURSIVE!




Parallel (In)Dependence




Parallel (In)Dependence

main

L/

NG

inp / ~outp,

inp / ~outp,

\

/

inp / Moutp2

inp / Moutpl

inp / “outp2 inp / Aoutpl

{outpl, outp2}



Parallel (In)Dependence

MyClass | _ _pchaviours > total state

counter:int |- - -

:MyClass

counter =0 ™ ;
: counter| 0] :

main

< - - - -

inp / counter += 2 inp/ counter *=3

A X

:MyClass :MyClass

counter| 2 counter| 0

inp / counter += 2 inp / counter *= 3

inp / counter += 2

:MyClass :MyClass

counter| 6 counter| 2




Orthogonality: Communication

Orthogonal Components can communicate:
main
L/ X Y * raising/broadcasting local events:
: ~’'<<event name>>

! h[INSTATE(X/A)]
A 5 C « state reference is a transition guard:

| l I INSTATE(<<state location>>)
e : n
f/A'g : i

_______________________________________________

Input Segment: nmnn
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Simulation Algorithm

simulate(sc: Statechart) {
input_events = initialize queue()

output events
local events

timers

initialize queue()
initialize queue()
initialize set()

curr_state = get effective target states(sc.initial state)
for (var in sc.variables) {
var.value = var.initial value

¥

while (not finished()) {
curr_event = input_events.get()
for (region in sc.orthogonal regions) {

h

enabled transitions[region] = find_enabled transitions(curr_state, curr_event, sc.variables)

while (not quiescent()) {

chosen_region = choose_one_region(sc.orthogonal regions)
chosen_transition = choose_one_ transition(enabled transition[chosen_region])
states to exit = get states to exit(get lca(curr_state, chosen_transition))
for (state to exit in states to _exit) {

cancel timers(state to exit, timers)

execute exit actions(state to exit)

remove state from curr_state(state to exit)
}
chosen_transition.action.execute(sc.variables, output_events, local events)
states to enter = get effective target states(chosen_transition)
for (state to enter in states to enter) {

add state to curr_state(state to_enter)

execute enter_actions(state to_enter)

start_timers(state to_enter, timers)

}

enabled transitions = find enabled transitions(curr_state, sc.variables, local events)



Conditional Transitions

[a > 2]

[a <= 2]

e.

» getEffectiveTargetStates(): select one True-branch

* Conditions should not overlap to avoid non-determinism
* In Yakindu, priority makes deterministic
* “else” branch is required

* Equivalent (in this case) to two transitions:
cA-efa>2]->C
cA-ela<=2]->B



Exercise 8

Add a timer
to the traffic light



Exercise 8: Requirements o (Gatherme

[M:Statecharts|
(:ModelSys!

In this exercise a timer must be modelled. - |
It introduces the use of orthogonal regions. verify Sys!
m—
 R10a: A timer displays the remaining time while the light is red or green.

* R10b: This timer decreases and displays its value every second.
* R10c: The colour of the timer reflects the colour of the traffic light.

exit / raise TrafficLight.displayNone
trafficlight

4 olice,
normal O interrupted
Red
blinking
entry / raise TrafficLight.displayRed
after redPeriod s / ‘
Yellow
\ e TrafficLight.displayYellow
Green
entry / raise TrafficLight.displayGreen @
ﬁ LG )ms after 0 ms

fter greenPeriod Black
after yellowPeriod s e TrafficLight.displayNon:

Yellow

entry / raise TrafficLight.displayYellow -
police_interrupt
hist @=




Exercise 8: Requirements TrafficLight o~ (Gt

-timer: int
(:ModelSys!

In this exercise a timer must be modelled. - |
It introduces the use of orthogonal regions. verify Sys!
m—
 R10a: A timer displays the remaining time while the light is red or green.

* R10b: This timer decreases and displays its value every second.
* R10c: The colour of the timer reflects the colour of the traffic light.

[M:Statecharts|

exit / raise TrafficLight.displayNone
trafficlight

4 olice,
normal O interrupted
Red
blinking
entry / raise TrafficLight.displayRed
after redPeriod s / ‘
Yellow
\ e TrafficLight.displayYellow
Green
entry / raise TrafficLight.displayGreen @
ﬁ LG )ms after 0 ms

fter greenPeriod Black
after yellowPeriod s e TrafficLight.displayNon:

Yellow

entry / raise TrafficLight.displayYellow -
police_interrupt
hist @=




Exercise 8: Solution TrafficLight o (Catherke

-timer: int [M:Statecharts|
| :ModelSysi
:ReviseSystem
Verify Sysi
——

 R10a: A timer displays the remaining time while the light is red or green.
* R10b: This timer decreases and displays its value every second.
 R10c: The colour of the timer reflects the colour of the traffic light.



Exercise 8: Solution

TrafficLight

-timer: int

[M:Statecharts|

® :GatheLRe

| :ModelSysi

:ReviseSystem

Verify Sysi

-

 R10a: A timer displays the remaining time while the light is red or green.
* R10b: This timer decreases and displays its value every second.
 R10c: The colour of the timer reflects the colour of the traffic light.

trafficlight
/ / ~displayRed; normal\ p/(\)li.ceiinte.rrupt /
setTimerValue(60); disableTimer
~resetTimer; "
4 interrupted

/ ~displayYellow

Yellow |«

after(1) /

after(60) /
AdisplayGreen;
setTimerValue(55);
~resetTimer

Green

after(55) /
~displayYellow;
~disableTimer

ey
®/

after(5) /
~enableTimer; 1
~displayRed; after(1) / “displayBlack
setTimerValue(60); ~displayNone
~resetTimer l

o

police_interrupt /
~enableTimer

N

disableTimer /
AupdateTimerValue(-1)

Disabled

resetTimer /
AupdateTimerValue(-1)

timer

enableTimer

DecidingCoIorJ

IN(trafficlight/normal/Green) /
~updateTimerColor("green");
AupdateTimerValue(getTimerValue())

after(1) /
~decreaseTimerValue();

after(1) /
decreaseTimerValue();
G reen AupdateTimerValue(getTimerValue())

running |\
X IN(trafficlight/normal/Red) /
~updateTimerColor("red");
\ ~updateTimerValue(getTimerValue()) Red

AupdateTimerValue(getTimerValue())




Solution 8

modelling approach

R10: a timer displays the remaining time while
the light is red or green

R10a: This timer decreases and displays its
value every second.

R10b: The colour of the timer reflects the colour
of the traffic light.

exit / raise TrafficLight.displayNone

1
trafficlight
nnnnn | police_interrupt / raise disableTimer
nnnnn |
. interrupted
l blinking
Red | ®
entry/ e TrafficLight.displayRed; l
t = redPeriod;

setTimer - Yellow

after redPeriod sl

The timer is defined in a second region within
state on (main in the Yakindu model).

An internal variable for the counter is
introduced. When switching the traffic light
phase, the counter value is set to how long the
light has been in that phase. Additionally, the
local events resetTimer, enableTimer,

and disableTimer are used to synchronize
traffic light phase switches with the timer.

When the timer is enabled it checks the active
traffic light phase using the active() function.

main

dbld\

nableTimer .
disableTimer
resetTimer
er.u

e Timer.updateTimerColoul

entry / raise TrafficLight.displayYellow

\ e Timer.u pd ateTimerValue: counter
€ after [500ms after |500ms
entry / raise TrafficLight.displayGreen; 1
co te = greenPeriod;
-aise resetTimer Black
= ) entry / raise TrafficLight.displayNone after 1s / count 1

after greenPeriod s
after yellowPeriod s /
l aaaaaaaa bleTimer
Yellow
entry / raise TrafficLight.displayYellow;
raise disableTimer

polic t Tupt
/ raise enableTimer

hist ®= ‘

reen )
e Timer.u| pd ateTimerValue: counte;j

[act l (TfnghtCtImanm
e Timer.updateTimerColoul

t ff Igh( normal.normal.Green)]



Yakindu syntax

Yakindu:
- raise e == e
- strict alternation between “or” and “and” states -
TrafficLightCtrl.main.main.trafficlight.normal.normal.Green

- active() == INSTATE() == IN()



Code Generation



b Code Generation

 Code generators for C, C++, Java, Python, Swift, Typescript,
SCXML

* Plain-code approach by default

* Very efficient code

« Easy integration of custom generators

JavaScript



Code Generation

* Various different approaches for
iImplementing a state machine (switch / case,
state transition table, state pattern)

* Which one is the best depends on

* Runtime (performance) requirements
* ROM vs. RAM memory

* Debugging capabilities

* Clarity and maintainability



Switch / Case

 Each state
corresponds to one case

« Each case executes
state-specific statements
and state transitions

public void stateMachine() {
while (true) {

switch (activeState) {

case RED: {
activeState = State.RED_YELLOW;
break;

}

case RED_YELLOW: {
activeState = State.GREEN;
break;

}

case GREEN: {
activeState = State.YELLOW;
break;

}

case YELLOW: {
activeState = State.RED;
break;

}
¥
)
}



State Transition Table

* Specifies the state machine purely

declaratively.

* One of the dimensions indicates current
states, while the other indicates events.

enum columns {
SOURCE_STATE,

USER_UP, USER_DOWN, POSSENSOR_UPPER_POSITION, POSSENSOR_LOWER_POSITION,

TARGET_STATE
1

#define ROWS 7
#define COLS 6

int state_table[ROWS][COLS] = {

/* source,
INITIAL,
IDLE,
IDLE,
MOVING_UP,
MOVING_UP,

(o et Rt N ate Nats)

up,
false,
true,
false,
false,
false,

down,
false,
false,
true,
true,
false,

upper,
false,
false,
false,
false,
true,

lower,
false,
false,
false,
false,
false,

target */

IDLE },
MOVING_UP },
MOVING_DOWN },
IDLE },

IDLE },



State Pattern

* Object-oriented implementation,
behavioural design pattern

* Used by several frameworks like Spring Statemachine,
Boost MSM or Qt State Machine Framework

« Each State becomes a class, events become methods

¢ AII Classes derive public class MovingUp extends AbstractState {
from a Common interface public MovingUp(StateMachine stateMachine) {

super(stateMachine);
¥

@Override
public veoid raiseUserDown() {
stateMachine.activateState(new Idle(stateMachine));

¥

@Override
public veoid raisePosSensorUpperPosition() {
stateMachine.activateState(new Idle(stateMachine));

}

@Override
public String getName() {
return "Moving up";

}



Hiearchy: outer vs. inner
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Hiearchy: outer vs. inner

Statemate, Yakindu, ...
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Hiearchy: outer vs. inner

Statemate, Yakindu, ...
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Rhapsody, ...




Hiearchy: outer vs. inner

Statemate, Yakindu, ...







Code Generation

Fast Memory easy to Easy to
efficient debug understand
cozer g OO
Case
State + @ —
Transition —
Table
= == g o
Pattern

A very simplified illustration



Code Generator Model

GeneratorModel for¢Zakindu::java {

CStatechart exercise®(

feature P21
TargetProject = "5 sctunit’>

targetFolIder = "src-gen"

libraryTargetFolder = "src

}

Has a generator ID

Has a generator entry

Each generator entry contains 1..n feature-configurations
Each feature-configuration contains 1..n properties



Generated Code

Sample

. TrafficLightCtrl.sct TrafficLightCtriStatemachinejava 23

break;

case main_main_trafficlight_interrupted blinking_ Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;

case main_main_trafficlight_normal_normal_Red:
exitSequence_main_main_trafficlight_normal_normal_Red();
break;

case main_main_trafficlight_normal_normal_Yel Low:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;

case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight _normal_normal_Green();
break;

default:
break;

b

" Default exit sequence for regicn blinking */
private void exitSequence_main_main_trafficlight interrupted blinking() {

switch (stateVector[@]) {

case main_main_trafficlight_interrupted blinking Black:
exitSequence_main_main_trafficlight_interrupted_blinking_Black();
break;

case main_main_trafficlight_interrupted blinking Yel Low:
exitSequence _main _main_trafficlight interrupted blinking Yellow();
break;

default:
break;

b

'* Default exit sequence for region normal */
private woid exitSequence _main_main_trafficlight normal normal() {

switch (stateVector[@]) {

case main_main_trafficlight normal normal Red:
exitSequence_main_main_trafficlight_normal_normal Red();
break;

case main_main_trafficlight_normal_normal_Yel low:
exitSequence _main_main_trafficlight normal_normal Yellow();
break;

case main_main_trafficlight_normal normal Green:
exitSequence_main_main_trafficlight_normal_normal_Green();
break;

default:
break;

¥

'* Default exit sequence for region timer */
private void exitSequence_main_main_timer() {

PRI I SIS " R



. TrafficLightCtrl.sct TrafficLightCtriStatemachinejava 23

break;

case main_main_trafficlight_interrupted blinking_ Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;

case main_main_trafficlight_normal_normal_Red:
exitSequence_main_main_trafficlight_normal_normal_Red();
break;

case main_main_trafficlight_normal_normal_Yel Low:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;

case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight _normal_normal_Green();
break;

default:
break;

Generated Code

Sample

¥

Files ¥

/* Default exit sequence for regicn blinking */
= private void exitSequence_main_main_trafficlight interrupted blinking() {

switch (stateVector[@]) {

case main_main_trafficlight_interrupted blinking Black:
exitSequence_main_main_trafficlight_interrupted_blinking_Black();
break;

case main_main_trafficlight_interrupted blinking Yel Low:
exitSequence _main _main_trafficlight interrupted blinking Yellow();

w [ sro-gen
w i traffic.light
~w £ trafficlightctrl
[# ITrafficLightCtriStatemachinejava
[J] SynchronizedTrafficLightCtriStaternachine.jar

[J] TrafficLightCtriStatemachinejava break;
T default:
m [Statemachine,java break;

[F Timer,java
m [TimerCallback.java
[J] RuntimeServicejava

¥
¥

/* Default exit sequence for region normal */
= private woid exitSequence _main_main_trafficlight normal normal() {

switch (stateVector[@]) {

case main_main_trafficlight normal normal Red:
exitSequence_main_main_trafficlight_normal_normal Red();
break;

case main_main_trafficlight_normal_normal_Yel low:
exitSequence _main_main_trafficlight normal_normal Yellow();
break;

case main_main_trafficlight_normal normal Green:
exitSequence_main_main_trafficlight_normal_normal_Green();
break;

default:
break;

TimerService,java
[ y

¥
¥

/* Default exit sequence for region timer */
= private void exitSequence_main_main_timer() {

PRI I SIS " R




. TrafficLightCtrl.sct TrafficLightCtriStatemachinejava 23

break;

case main_main_trafficlight_interrupted blinking_ Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;

case main_main_trafficlight_normal_normal_Red:
exitSequence_main_main_trafficlight_normal_normal_Red();
break;

case main_main_trafficlight_normal_normal_Yel Low:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;

case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight _normal_normal_Green();
break;

default:
break;

Generated Code

Sample

¥

Files }

/* Default exit sequence for regicn blinking */
= private void exitSequence_main_main_trafficlight interrupted blinking() {

switch (stateVector[@]) {

case main_main_trafficlight_interrupted blinking Black:
exitSequence_main_main_trafficlight_interrupted_blinking_Black();
break;

case main_main_trafficlight_interrupted blinking Yel Low:
exitSequence _main _main_trafficlight interrupted blinking Yellow();

w [ sro-gen
w i traffic.light
~w £ trafficlightctrl
[# ITrafficLightCtriStatemachinejava
[J] SynchronizedTrafficLightCtriStaternachine.jar

[J] TrafficLightCtriStatemachinejava break;
T default:
m [Statemachine,java break;

[F Timer,java
m [TimerCallback.java
[J] RuntimeServicejava

¥
h

/* Default exit sequence for region normal */
= private woid exitSequence _main_main_trafficlight normal normal() {

switch (stateVector[@]) {

case main_main_trafficlight normal normal Red:
exitSequence_main_main_trafficlight_normal_normal Red();
break;

case main_main_trafficlight_normal_normal_Yel low:
exitSequence _main_main_trafficlight normal_normal Yellow();
break;

case main_main_trafficlight_normal normal Green:
exitSequence_main_main_trafficlight_normal_normal_Green();
break;

default:
break;

b

TimerService,java
[ y

> 8 files
> 1311 lines of code
> 302 manual (Ul) code

¥

/* Default exit sequence for region timer */
= private void exitSequence_main_main_timer() {

PRI I SIS " R




protected wvoid setupStatemachine() {

statemachine = new SynchronizedTrafficLightCtrlstatemachine();
Interface Setup COde timer = new MyTimerService(18.8);

statemachine.setTimer(timer);

TrafficLightCtrl

interface: (Excerpt) statemachine.getSCITrafficlight().getlisteners().add(new ITrafficlightCtrlStatemachine.SCITrafficlightlistener() {

in event police_intermupt @override

in event toggle public void onDisplayYellowRaised() {

setlights(false, true, false);

interface TrafficLight:

out event displayRed

out event displayGreen public wvoid onDisplayRedRaised() {[]

out event displayYellow

out event displayNone public void onDisplayMoneRaised() {[]
interface Timer: public woid onDisplayGreenRaised() {[]

out event updateTimerColour: string s

out event updateTimervalus: integer
statemachine.getSCITimer().getlisteners().add(new ITrafficLightCtrlStatemachine.SCITimerListener() {

internal:
event resetTimer @override
event disableTimer public void onUpdateTimerValueRaised(long wvalue) {
event enableTimer crossing.getCounterVis().setCounterValue(value);
var counter: integer repaint();

@verride
public void onUpdateTimerColourRaised(String value) {
crossing.getCountervis().setColor(value == "Red” ? Color.RED : Color.GREEN);
}
BE

buttonPanel.getPoliceInterrupt()
.addActionListener(e -> statemachine.getSCInterface().raisePolice_interrupt());

buttonPanel.getSwitchOnoff()
.addActionlListener(e -> statemachine.getSCInterface().raiseToggle());

statemachine.init();

}

private void setlights(boolean red, boolean yellow, boolean green) {
crossing.getTrafficLightVis().setRed(red);
crossing.getTrafficLlightVis().setyellow(yellow);
crossing.getTrafficlightVis().setGreen(green);
repaint();



protected wvoid setupStatemachine() {

statemachine = new SynchronizedTrafficLightCtrlstatemachine();
Interface Setup COde timer = new MyTimerService(18.8);

statemachine.setTimer(timer);

TrafficLightCtrl

interface: (Excerpt) statemachine.getSCITrafficlight().getlisteners().add(new ITrafficlightCtrlStatemachine.SCITrafficlightlistener() {

in event police_intermupt @override

in event toggle public void onDisplayYellowRaised() {

setlights(false, true, false);

interface TrafficLight:

out event displayRed

out event displayGreen public wvoid onDisplayRedRaised() {[]

out event displayYellow

out event displayNone public void onDisplayMoneRaised() {[]
interface Timer: public woid onDisplayGreenRaised() {[]

out event updateTimerColour: string s

out event updateTimervalus: integer
statemachine.getSCITimer().getlisteners().add(new ITrafficLightCtrlStatemachine.SCITimerListener() {

internal:
event resetTimer @override
event disableTimer public void onUpdateTimerValueRaised(long wvalue) {
event enableTimer crossing.getCounterVis().setCounterValue(value);
var counter: integer repaint();

@verride
public void onUpdateTimerColourRaised(String value) {
Generator crossing.getCountervis().setColor(value == "Red” ? Color.RED : Color.GREEN);
}
BE

GeneratorModel for yakindu::java {
buttonPanel.getPoliceInterrupt()
. . .addActionListener(e -> statemachine.getSCInterface().raisePolice_interrupt());

statechart TrafficLightCtrl {

buttonPanel.getSwitchOnoff()

feature Outlet { .addActionlListener(e -> statemachine.getSCInterface().raiseToggle());
targetProject = "traffic_light history” statemachine.init();
targetFolder = “src-gen” }

} private void setlights(boolean red, boolean yellow, boolean green) {
crossing.getTrafficLightVis().setRed(red);
crossing.getTrafficLlightVis().setyellow(yellow);

feature Naming { crossing.getTrafficlightVis().setGreen(green);
basePackage = "traffic.light” repaint();
implementationsSuffix ="" o7

feature GeneralFeatures {
RuntimeService = true
Timerservice = true
InterfaceObserversupport = true

feature SynchronizedWrapper {
namePrefix = "Synchronized”
namesuffix = ""



protected wvoid setupStatemachine() {

statemachine = new SynchronizedTrafficLightCtrlstatemachine();
Interface Setup COde timer = new MyTimerService(18.8);

statemachine.setTimer(timer);

TrafficLightCtrl

interface: (Excerpt) statemachine.getSCITrafficlight().getlisteners().add(new ITrafficlightCtrlStatemachine.SCITrafficlightlistener() {

in event police_intermupt @override

in event toggle public void onDisplayYellowRaised() {

setlights(false, true, false);

interface TrafficLight:

out event displayRed

out event displayGreen public wvoid onDisplayRedRaised() {[]

out event displayYellow

out event displayNone public void onDisplayMoneRaised() {[]
interface Timer: public woid onDisplayGreenRaised() {[]

out event updateTimerColour: string s

out event updateTimervalus: integer
statemachine.getSCITimer().getlisteners().add(new ITrafficLightCtrlStatemachine.SCITimerListener() {

internal:
event resetTimer @override
event disableTimer public void onUpdateTimerValueRaised(long wvalue) {
event enableTimer crossing.getCounterVis().setCounterValue(value);
var counter: integer repaint();

@verride
public void onUpdateTimerColourRaised(String value) {
crossing.getCountervis().setColor(value == "Red” ? Color.RED : Color.GREEN);

Generator

GeneratorModel for yakindu::java {

}
1

buttonPanel.getPoliceInterrupt()
statechart Traffic Light[trl { .addActionListener(e -> statemachine.getSCInterface().raisePolice_interrupt());
buttonPanel.getSwitchOnoff()
feature Outlet { .addActionlListener(e -> statemachine.getSCInterface().raiseToggle());
targetProject = "traffic_light history” statemachine.init();
targetFolder = “src-gen” }

} private void setlights(boolean red, boolean yellow, boolean green) {
crossing.getTrafficLightVis().setRed(red);
crossing.getTrafficLlightVis().setyellow(yellow);

feature Naming { crossing.getTrafficlightVis().setGreen(green);
basePackage = "traffic.light” repaint();
implementationsSuffix ="" o7

feature GeneralFeatures {
RuntimeService = true
Timerservice = true
InterfaceObserversupport = true

Runner

feature SynchronizedWrapper { protected void run() {

namePrefix = "Synchronized” statemachine.enter();
namesuffix = el - RuntimeService.getInstance().registerStatemachine(statemachine, 188);



Deployed Application (Scaled Real-Time)

ONIOFF POLICE INTERRUPT





Deploying onto Hardware




Deploying onto Hardware

§ 4

SR E e e
. L

Interface:

* pinMode(pin_nr, mode)

* digitalWrite(pin_nr, {0, 1})
* digitalRead(pin_nr): {0, 1}




Deploying onto Hardware

Generator

GeneratorModel for yakindu::c {
statechart TrafficLightCtrl {

feature Outlet {
targetProject = "traffic_light arduine”
targetFolder = “srg-gen”
libraryTargetFolder = "src-gen”

}

feature FunctionInlining {
inlineReactions = true
inlineEntryacticns = true
inlineExitActions = true
inlineEnterSequences = true
inlineExitSequences = true
inlineChoices = true
inlineEnterRegion = true
inlineExitRegion = true
inlineEntries = true



Deploying onto Hardware

Deployed Application

Runner

#¢define CYCLE_FERICD (10}
static unsigned long cycle_count = 0L:
static unsigned long last_cycle time = 0L;

vold loop() |

unsigned long current millies = millis(j;

read pushbutton (spushbutton);

if { cycle_count == 0L || (current_millies >= last_cycle time + CYCLE PERICD) ) |
sc_timer service proceed{stimer service, current millies - last_cycle_time):
aynchronize (strafficlight)
trafficLightCtrl_runCycle (strafficLight) ;
last _cycle_time = current _millies;
cycle count++;

Button Code

vold read pushbutton(pushbutton t *button) {
int pin_walue = digitalRead(button->pin);

if (pin_walue != button->debounce_ state) |
button->last_debounce time = millis();

}

if ((millis({) - button->last_debounce time) > button->debounce delay) {
if (pin_walus !'= button->state) |

button->state = pin_walus;
button->callkack {button) ;

}

button->debounce_state = pin_value;




Semantic Choices



Semantic Choices

enabled events: [inc_one, inc_two]

Plant

p
Process_1 Process_2 i .
tg: tnetwo process

Ja:=a+2; b:=b4+2;

- et
tirwnc.one process
Ja:=a+1; b:=b+1;

~ _ N ~ _— —
[Wra it_2 }
— I ——

— — T— s

¢ ™ :

Idle_1 Wait_1 J " | Idle 2
X :
|

ta: end_process

tg: end_process/a:=0; b:=;

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.




Big Step, Small Step

* A “big step” takes the system from one “quiescent
state” to the next.

* A “small step” takes the system from one “snapshot”
to the next (execution of a set of enabled transitions).

* A “combo step” groups multiple small steps.

o . -
. t
I Spt i Sp1 SPn—2 ¢ SPn—1 Spf
Small Steps N~ ~ =
Tl Tn—l Tﬂ,
Combo Steps —— S ~ -
Big Step T ~ ~

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.




emantic Options

[SUL'RCEJDL-S'HNA'l 10N OR'I'HUGUNALJ

Big-Step Maximality

ARENA ORTHOGONAL

Section 3.1

Small-Step Consistency
Section 3.2.2

Concurrency and

PRESENT IN

NON-PREEMPTIVE REMAINDER

|

FPREEMPTI

Preemption
Section 3.2.3

(Internal) Events
Section 3.3

PRESENT IN SAME

External Events External Input

SYNTACTIC

ENVIRONMENTAL

Hy®BrID INPUT
EVENTS

Event Lifeline
Section 3.3

I

Section 3.3.1 Events
External Qutput
Section 3.3.2
Oy

[S TRONG SYNCHRONOUS F.\p"F..\'T]

[“’F.AK SYNCHRONOUS EVENT ]

[AS‘(NC'HRONOUS EVENT ]

SYNTACTIC

LAST COMBO STEP
GENERATED Ev

HyBrID OUTPUT
EVENTS

BSML Semantics

GC BIG STEP
GC SMALL STEP
GC CoMEO STEP

GC STRONG SYNCHRONOUS VARIABLE J

Enabledness Memory
Protocol — Section 3.4

Intertace Variables
inGC - Section

GC WEAK SYNCHRONOUS VARIABLE ]

GC ASYNCHRONOUS VARIABLE J

RHS BIG STEP
RHS COMBO STEP

RHS STRONG SYNCHRONOUS \".\R[ABI.F]

Assignment Memory
Protocol — Section 3.5

Order of Small Steps| 4
Secrion 3.6

RHS WEAK SYNCHRONOUS V.\R[ABI.F}

RHS ASYNCHRONOUS VARIABLE J

Priority
Section 3.7

COMBO SYNTACTIC

NEGATION OF
TRIGGERS

COMBO TAKE ONE

Comeo TAKE Many

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.




Revisiting the Example

Plant

enabled events: [inc_one, inc_two]

Process_1

- -~
1.1[ TnC_.one procecss

Jar=a+1; b:=b+41;

Process_2 . -
ta:inctwo process

/u::_aiE:, b:=b+2;

—_— "\‘ i T—
= e
k- -
e h
e -~ ——

Wait_1 J | [Idiej ‘ Wait_2 }
|

Idle Wait
|\ _

tg: end_process/a:=0; b:=0;

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.




Revisiting the Example

enabled events: [inc_one, inc_two]

Plant

Process_1

T
Process_2 . -
ta:inctwo process

/u::_aiE:, b:=b+2;

- -~
1.1[ TnC_.one procecss

Jar=a+1; b:=b+41;

- — ~ _— R
EﬂaQ ‘ W ait_2 }
s —— - __':—-

~ , o
Pd&l } 1MML1J:
L L :

I

Wait

_ -
Idle

tg: end_process/a:=0; b:=0;

concurrency: single

event lifeline: next combo step

assignment: RHS small step

-> <{tl1}, {t3}, {t5}> and
<{t3}, {tl1}, {t5}>

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.




Revisiting the Example

enabled events: [inc_one, inc_two]

Plant

—— o

Process_1 ) - | Process_2 ) -
tirtnc_one process | tarenctwo process
Jar=a+1; b:=b+41; ! Jai=a+2; b:=b42;
T — m . “ — =
(Idie_l Wait_1 J ! [Idiej ‘ Wait_2 }
— ~ : ~. ~

ty: end_process

to: end_process

tg: end_process/a:=0; b:=0;

concurrency: single

event lifeline: next combo step

assignment: RHS small step

-> <{tl1}, {t3}, {t5}> and
<{t3}, {t1}, {t5}>

event lifeline: present in remainder

-> <{tl}, {t5}, {t3}> becomes
possible

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.




Event Lifeline

—

&

.'=|:I::| - - :’

E.‘Fj‘."_r ] .ﬁ'-jr;l_ R X t .-1I|]'."I

Small Steps x._v,_.f._ »._.\,_..:

T

S e
T_: TE; H T| T:',.

Combo Steps

Big Step ~

o i ; Oz

PRESENT IN WHOLE L

PRESENT IN REMAINDER
PRESENT IN MEXT COMBO STEP
PRESENT IN NEXT SMALL STEP
PRESENT IN SAME

285



Semantic Options: Examples

Big Step Maximality Take Many Take Many Take Many
Internal Event Lifeline Queue Next Combo Step Queue

Input Event Lifeline First Combo Step First Combo Step First Combo Step
Priority Source-Child Source-Parent Source-Parent
Concurrency Single Single Single

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.




Composition



Composition of Statecharts

« Composition of multiple Statechart models

| | 1 |

* |[nstantiation
| | n

 Communication I —

u I I L“ms;azfm normal L/Ad‘sp’la\vjed normal

u ~ interrupted interrupted
* Semantics (e (e )
<—‘ after(60) / ~displayGreen police_interrunt 4—‘

after(60) / ~displayGreen

police_interrupt
after(5) /

~displayRed| after(1) /

after(s) /
after(1) /
after(1) / ~displayYellow

displayRed
after(1) / ~displayYellow
AdisplayNone

* Often solved in code... e

police_interrupt

after(55) / ~displayYellow

after(55) / ~displayYellow

Yellow [— Yellow —

1

L

b _—
/" _ normal\

14 . normal\
L / ~displayRed L / ~displayRed

( interrupted
a !
/ ~displayYellow
Yellow <~| after(60) / displayGreen ) Yellow <-|
police_interrupt

( interrupted

/ ~displayYellow

o

after(60) / ~displayGreen
after(s) /
after(1) /

police_interrupt
~displayRed

after(5) /
after(1) /
after(1) / ~displayYellow
AdisplayNone

after(1) / ~displayYellow
A layN
epimone Green

~displayRed|

Green

police_interrupt

{i)

police_interrupt

after(55) / ~displayYellow

after(55) / ~displayYellow

7 Yellow [—
-

Hy

~—




Composition Example

Crossing

e ——

_ . — = trafficLightA
e _ trafficLightB |~ .

# - # -

j - e
e |

ra q‘ -

/ g N N

d “
r L
P B,
TrafficLightGtrl . — TrafficLightCtrl
O OFF

POLICE INTERELIPT



Composition Example

crossing control

$»—

toggleCnOff

A

toggleCnOff

entry [ trafficLightA.enter; trafficLightB.enter
exit / trafficLightA, ~exit; trafficLightB. ~exit

?

inner region

prepare release A

@—— entry/

trafficLightA.raiselock;
trafficLightB.raiseLock

Normal

release A

every 100ms
[trafficLightB.isRaisedLocked]

release B
entry [ trafficLightB.raiseRelease

after 10s entry / trafficLightA.raiseRelease

every 100ms
[trafficLightA.isRaisedLocked]

prepare release B
entry /
trafficLightA.raiseLock;

after 108

’ trafficLightB. raiselLock

&

interrupted
> entry
trafficLightA.raiseStandby;
togglelnterrupt trafficLightB. raiseStandby

n—
lelnterry exit /
— P trafficLightA.raiseStandby;

trafficLightB.raiseStandby
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SCCD

https://msdl.uantwerpen.be/documentation/SCCD/

SCCD Documentation

SCCD [SCCD] is a language that combines the Statecharts [Statecharts] language with Class Diagrams. It allows users to model complex, timed,
autonomous, reactive, dynamic-structure systems.

The concrete syntax of SCCD is an XML-format loosely based on the W3C SCXML recommendation. A conforming model can be compiled to a number of
programming languages, as well as a number of runtime platforms implemented in those languages. This maximizes the number of applications that can be
modelled using SCCD, such as user interfaces, the artificial intelligence of game characters, controller software, and much more.

This documentation serves as an introduction to the SCCD language, its compiler, and the different supported runtime platforms

Contents
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o SCCD Installation
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Examples
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Recap

* Model the behaviour
of complex, timed, reactive, autonomous systems

* “What” instead of “How”
(= implemented by Statecharts compiler)
* Abstractions:
» States (composite, orthogonal)
* Transitions
* Timeouts
* Events

* Tool support:
* Yakindu
* SCCD
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