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Complexity!Complexity!
        causes?causes?



Causes of Complexity?

in Engineering vs. in Science

Complex vs. Complicated

- large number of components
- heterogeneity
- emergent behaviour
- multiple concerns/views/stakeholders → consistency?
- engineering: long requirements → design path
- insufficient understanding of requirements, system under study, …
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How to deal with Complexity?
(in engineered systems)



at the most appropriate level(s) of abstractionat the most appropriate level(s) of abstraction
using the most appropriate formalism(s)using the most appropriate formalism(s)

explicitly modelling workflowsexplicitly modelling workflows







“Model” Features
1973



Mannequin comes from the French 
word mannequin, which had 
acquired the meaning "an artist's 
jointed model", which in turn came 
from the Flemish word manneken, 
meaning "little man, figurine".
The American Heritage Dictionary of the English Language. 
Houghton Mifflin Company. 2004. 

https://en.wikipedia.org/wiki/The_American_Heritage_Dictionary_of_the_English_Language






MPM



“System”



a

system = environment / “plant” / controller



purpose



model must be “fit for purpose”

drives choice of:
level of abstraction, formalism, notation, ….



purpose



Model Validity … Context?

Spiegel, Reynolds, and Brogan  
 

Participants were instructed to ignore any constraints 
related to the implementation of the model.  In the falling 
body simulation, there are multiple implementation choices 
of numerical methods and numerical precision.  In comput-
ing position as a function of time, what sort of numerical 
integration method should be employed?  What effect 
would it have on correctness of results?  We have chosen 
not to discuss implementation assumptions in order to fo-
cus attention on the model instead of the simulation.  When 
joining composable simulations it will be necessary to 
validate both the combined model and then to validate the 
combined simulation. 

After a period of two weeks submissions were tabu-
lated and a master list was created and discussed among 
the contestants and others.  We defer discussion of the re-
sults to after the presentation of the challenge in the next 
section. 

3.2 Falling Body Model 

The following model is an extended version of the model 
presented in Appendix A of the monograph by Davis and 
Anderson (2003).  A sphere is falling through some me-
dium and experiencing drag as it falls.  Let p(t) equal the 
position of the sphere at time t and p(0) = p0 be the initial 
position.  Let v(t) = p′(t) equal the velocity of the sphere at 
time t, and let v(0) = v0 be the initial velocity.  Calculate 
p(t) and v(t) for all t ≥ 0. 

The sphere is perfectly smooth, it has diameter d and 
mass m.  The medium has uniform density ρf and uniform 
kinematic viscosity ν.  Assume that when the sphere im-
pacts with the earth, p(tearth) = 0, it will remain on the 
ground for all t > tearth. 

The following forces will act on the sphere (Chow 
1979): 

 
•  Gravity: The sphere experiences constant accel-

eration, g ≈ 9.8 m/s2. 
•  Buoyancy: mf = (1/6)πd3ρf  against gravity. 
•  Inertial drag: (1/2) mf v′ (t) 
•  Viscous drag: (1/2)ρf · v(t) ·│v(t)│· π/4 · d2 · 

cd(v(t))  
•  Wave drag: Wave drag is negligible at subsonic 

speeds. 
 

We apply Newton’s Second Law to determine acceleration, 
and then employ numerical methods of integration to cal-
culate velocity and position. 

 

 
Figure 1: Falling Body Model 

 
The term cd is the drag coefficient and it is defined as a 
function of the Reynolds number, which is Re = v(t) · d / ν.  
The drag coefficient is determined experimentally as a 
function of the Reynolds number.  Both the drag coeffi-
cient and the Reynolds number are dimensionless values.  
For a perfectly smooth sphere, cd can be approximated 
piecewise with the following function, 
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The reader interested in pursuing the challenge without 
bias from the challenge results should pause at this point, 
continuing when identification of unstated constraints is 
completed.  We discuss the results of the challenge next. 

3.3 Challenge Results and Constraint Taxonomy 

The competition produced a master list of twenty-nine 
validation constraints (see Appendix).  From them we have 
derived a taxonomy of validation constraint types.  Every 
effort has been made to remove redundant constraints and 
to represent identified validation constraints as concisely as 
possible.  We make no claim to having found all validation 
constraints for the falling body model.   

It is illuminating to consider that the top three contest-
ants identified only 21, 19, and 16 constraints, respectively, 
out of the master list (see Table 1).  No single participant 
was capable of identifying more than three-quarters of all 
currently identified constraints.  Like the component de-
signers of (Garlan, Allan, and Ockerbloom 1995) our chal-
lenge participants were neither “lazy, stupid, nor mali-
cious.” Each participant failed to identify several implicit 

Spiegel, M., Reynolds, P. F., & Brogan, D. C. 
A Case Study of Model Context for Simulation Composability and Reusability. 
In Proceedings of the Winter Simulation Conference, 2005. (Vol. 2005, pp. 437–444). IEEE.
http://doi.org/10.1109/WSC.2005.1574279

http://doi.org/10.1109/WSC.2005.1574279


Implicit Assumptions!

Spiegel, Reynolds, and Brogan  
 
In an informal contest related to our study, no participant 
identified more than 75% of the ultimate set of constraints 
identified.  Borrowing from Garlan, Allan, and Ocker-
bloom our challenge participants were neither “lazy, stu-
pid, nor malicious.” (1995) 

We believe the study reported here can be useful to the 
reader beyond the results above.  The falling body model 
presents a fine example for testing any proposed reusability 
process.  If the process cannot lead to the efficient extrac-
tion of the constraints listed in the Appendix, then it is of 
questionable value. 

In the future we anticipate further study of our initial 
taxonomy of validation constraints.  Will other types of 
simulations yield new categories of constraints? The tax-
onomy is useful only if it can serve as a general guidepost 
that suggests hidden constraints that have not been identi-
fied.  Additionally the taxonomy for the simulation com-
munity may benefit from insights in the larger domain of 
software design.  Generic software applications contain 
properties that are identified as invariant or time-
dependent.  Can the lessons from formal software analysis 
be applied to our objectives? We will be exploring these 
issues. 
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APPENDIX: FALLING BODY CONSTRAINTS 

1.  Invariant Constraints 
 

   1.a  Sphere Attributes 
 
1. Sphere Property - The body is a sphere and it re-

mains spherical.  
2. Smooth Property - The body is smooth and it re-

mains smooth. 
3. Impermeable Property - The body is completely 

impermeable. 
4. Initial Velocity - The body has an initial velocity 

of v0 that has no horizontal component of motion. 
5. Angular Velocity - The body has no initial angu-

lar velocity.  
6. Constant Mass - The mass of the body remains 

constant over time.  The body does not experience 
ablation or accretion.  

7. Constant Diameter - The diameter of the body 
remains constant over time.  

8. Distribution of Mass - The body has a centrally 
symmetric mass distribution that remains constant 
over time. 

9. Uncertainty Principle - The diameter of the body 
is much greater than the Plank length. 

10. Brownian Motion - The mass and diameter of the 
body are large enough such that Brownian motion 
of the fluid has negligible impact on the body. 

11. General Relativity - The mass of the body is low 
enough to ignore the gravitational curvature of 
space-time. 

 
   1.b  Fluid Attributes 

 
12. Fluid Density - The fluid density is constant.  The 

fluid is incompressible. 
13. Fluid Pressure - The fluid pressure is constant. 
14. Fluid Temperature - The fluid temperature is con-

stant. 
15. Kinematic Viscosity - The kinematic viscosity is 

constant.  The medium is a Newtonian fluid. 
16. Stationary Fluid - The fluid is stationary apart 

from being disturbed by the falling body. 
17. Infinite Fluid - The volume of the fluid is large 

enough to completely envelope the sphere.  The 
movement of the fluid is not restricted by a con-
tainer such as a pipe or tube.  

 
   1.c  Earth Attributes 

 
18. Flat Terrain - The ground does not have terrain 

and remains flat for all t > 0. 
19. Coriolis Effect - The Earth is not rotating.  We ig-

nore the Coriolis effect. 
 

2.  Dynamic Constraints 
 
20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-
dium. 

21. Special Relativity - The velocity of the body is 
sufficiently less than the speed of light for that 
medium. 

22. Reynolds Number - The Reynolds number re-
mains between 10-2 and 107 for all t > 0.  The 
Reynolds number is a function of velocity. 

 
3.  Inter-Object Constraints 

 
23. Sphere/Fluid Interaction - The body and the fluid 

interact only through buoyancy and drag.  For ex-
ample, the body cannot dissolve in the fluid, nor 
can the body transfer heat to the fluid. 
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Spiegel, Reynolds, and Brogan  
 

24. Sphere/Earth Interaction - The body and the earth 
interact only through the gravitational force. 

25. Fluid/Earth Interaction - The fluid and the earth 
do not interact. 

26. Closed System - The Earth, sphere, and fluid do 
not interact with any other objects. 

27. Simple Gravity - Gravity is a constant downward 
force of 9.8 m/s2. 

28. One-Sided Gravity - The mass of the body is 
much less than the mass of the Earth.  The Earth 
is not affected by the gravitational pull of the 
body. 

29. Inelastic Collision - The collision between the 
sphere and the ground is perfectly inelastic. 
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(i.e., a set of properties)

design
 
(may in turn serve as requirements ...)

– satisfied by →

note: product family
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How to deal with Complexity?
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“architectural” (hierarchical) (de-)composition 
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unexpected interactions (between heterogeneous components) 

(only “emerge” when doing full system evaluation)
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Cause of Complexity: constrained resources   
 unanticipated interactions

VW Phaeton: “wiring harness” length > 2km, copper weight > 30kg
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Deployment
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MiL, HiL, SiL, ...
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McLeod J. PHYSBE ... a physiological simulation benchmark experiment SIMULATION vol 7 no 6 December 1966 pp 324-329







purpose





Joel Spolsky
http://www.joelonsoftware.com/articles/LeakyAbstractions.html

“All non-trivial abstractions, to some degree, are leaky.”

Caveat: “Leaky” Abstractions (and approximations) 

http://www.joelonsoftware.com/articles/LeakyAbstractions.html


Joel Spolsky
http://www.joelonsoftware.com/articles/LeakyAbstractions.html

“All non-trivial abstractions, to some degree, are leaky.”

Caveat: “Leaky” Abstractions (and approximations) 

Alexandre Muzy, David R. C. Hill. What is new with the activity world view in 
modeling and simulation?: using activity as a unifying guide for modeling and 
simulation. Winter Simulation Conference 2011: 2887-2899.

Bin Chen, Lao bing Zhang, Xiaocheng Liu, and Hans Vangheluwe. Activity-based 
simulation using DEVS: increasing performance by an activity model in parallel 
DEVS simulation. Journal of Zhejiang University - Science C, 15(1):13 – 30, 2014. 

http://www.joelonsoftware.com/articles/LeakyAbstractions.html


and depends 

on the properties of interest!

abstraction



may use to reason (for a while) about abstraction “flock” 



How to deal with Complexity?
(in engineered systems)



(hierarchical) decomposition, multiple formalisms, 
multiple abstractions, … and

multiple viewpoints











guarantees offered by the component 
assumptions on its possible context



How to deal with Complexity?
(in engineered systems)



Recursive workflow: 
from Properties to Design 
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