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Finite State Automaton

(E:X:f:JTU:F)
e F is a finite alphabet
e X is a finite state set

e f is a state transition function,
f: X xE—X

e 1 Is an initial state, g € X
e ['is the set of final states

Dynamics (z is next state):



FSA graphical /visual notation: State Transition
Diagram




FSA Operational Semantics
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Simulation steps
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State Automaton

(E X, T f, :I:U)
e [ is a countable event set
e X is a countable state space

e ['(x) is the set of feasible or enabled events
re X, I'(x) CE

e f is a state transition function,
f: X x E— X, only defined for e € I'(x)

e 1 is an initial state, g € X

(£, X. T, f)

omits xp and describes a class of State Automata.



State Automata for Queueing Systems

M fj Y I
Y,
pu i Hﬂkﬂﬂijﬂ A
—‘4—.\- ) \ | I."l I"-,I : / \ / -
- i e o0 Departure
Arrival ) Queue F Cashier
Physical View
7 |"/ \n -
-, \ / Departure
N/
Arrival Cashier

Queue

[IAT distribution] [ST distribution]

Abstract View



State Automata for Queueing Systems:
customer centered

E ={a,d}
X =1{0,1,2,...}
D(x) = {a.d}. ¥z > 0:T(0) = {a}
flo.a) =2 +1,¥z >0
flo d) =2 —1,%z >0



State Automata for Queueing Systems:
server centered (with breakdown)




State Automata for Queueing Systems: server
centered (with breakdown)

E ={s,c.b,r}

Events: s denotes service starts, ¢ denotes service completes, b

denotes breakdown, r denotes repair.
X ={I,B,D}
State: [ denotes idle, B denotes busy, D denotes broken down.
I'(I) = {s}.T(B) = {c,b},I'(D) = {r}
f(I,5) =B, f(B,c) = I, {(B,b) = D, {(D,r) = I



Limitiations/extensions of State Automata

Adding time ?

Hierarchical modelling 7
Concurrency by means of x
States are represented explicitly

Specifying control logic, synchronisation 7



Petri nets

Formalism similar to FSA
Graphical/Visual notation
C.A. Petri 1960s

Additions to FSA:
— Explicitly (graphically/visually) represent when event is enabled

— describe control logic
— Elegant notation of concurrency

— Express non-determinism



Petri net notation and definition (no dynamics)

(P,T, A, w)

of P ={py,po,...} is a finite set of places
o I'={t1.ta,...} is a finite set of transitions
e AC(PxT)u(T x P)is a set of arcs

o w: A — Nisa weight function

Note: no need for countable P and T'.



Derived Entities

[(t;) ={pi: (pi.t;) € A} set of input places to transition t;

(= conditions for transition)

O(t;) ={p;: (t;.p;) € A} set of output places from transition t;
(= affected by transition)

Transitions = events
similarly: input- and output-transitions for p;

graphical /visual representation: Petri net graph (multigraph)



02

T1

Example Petri Net

P = {H, 02, H20, P3, P4}
T={t T1, T2}
A= {(H2,0), (O2,1), (02, T1), (t, H20), (t, P3), (H20, T2), (T2, P4)}

w((H2,0) = 2, w((t, P3)) = 3, w((02,1)) = w((02, T1)) = w((t, H20)) = w((H20, T2)) = w((T2, P4)) = 1
I(t) = {H, 02}, I(T1) = {02}, I(T2) = {H20}

O(t) = {P3, H20}, O(T1) = {}, O(T2) = {P4}



Pure Petri net

1

PO TO

e No self-loops:
Api € Pit; €T : (pi.tj) € A (tj,pi) € A

e Can convert impure to pure Petri net



Introducing State: Petri net Markings

Conditions met ? Use tokens in places
Token assignment = marking x
r:P—N
A marked Petri net
(P, T, A, w.z0)

20 is the initial marking

The state x of a marked Petri net

Number of tokens need not be bounded (cfr. State Automata

states).
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Example Marked Petri Net

P ={H, 02, H20, P3, P4}
T={tT1, T2}
A={(H2,t), (02,1, (02, T1), (t, H20), (t, P3), (H20, T2), (T2, P4)}

w((H2,1)) = 2, w((t, P3)) = 3, w((02,t)) = w((02, T1)) = w((t, H20)) = w((H20, T2)) = w((T2, P4)) =1
I(t) = {H, 02}, I(T1) = {02}, I(T2) = {H20}

O(t) = {P3, H20}, O(T1) = {}, O(T2) = {P4}

x=[9,1,1,0,0] corresponding to places [H, 02, H20, P3, P4]



State Space of Marked Petri net

e All n-dimensional vectors of nonnegative integer markings

X =N"
e Transition t; € 1" is enabled if

;r(p.f_) > it-’(p-aiij)f?”pi - I(tj)



Example Marked Petri Net
Enabled transitions in red




Petri Net Dynamics

State Transition Function f of marked Petri net (P.1., A, w, x()
f N"xT — N"
is defined for transition ¢; € 1" if and only if
x(pi) = w(pi, t;), Vpi € 1(t;)
If f(x,%;) is defined, set X" = f(x,?;) where
Y (pi) = 2(pi) — w(pi.t;) + wit;, p)
e State transition function f based on structure of Petri net

e Number of tokens need not be conserved (but can)



Algebraic Description of Dynamics

e Firing vector u: transition j firing
u=10,0,...,1,0,...,0
e |ncidence matrix A :
aj; = w(tj,pi) — w(pi,t;)

e State Equation
x" = x + uA



Semantics

e sequential vs. parallel

e Handle nondeterminism:
1. User choice
. Priorities

2
3. Probabilities (Monte Carlo)
4

. Reachability Graph (enumerate all choices)



Example Marked Petri Net
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Marking corresponds to [H, O2, H20, P3, P4]



Pattern: sequence
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Pattern: sequence
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Pattern: sequence
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Pattern: sequence
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Pattern: sequence
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S0

Pattern: sequence

S
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S0=1[2,0, 0]
S1=1[1,1, 0]
S2=[1,0, 1]
S3=]0, 2, 0]
S4 =10, 1, 1]
S5=]0,0, 2]

S5



Pattern: split
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Pattern: split
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Pattern: split
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Pattern: split

T0O
S0 > 51
S0 =[1, 0, 0]

S1=10, 1, 1]



Pattern: join
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Pattern: join
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Pattern: join
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Pattern: join
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Pattern: conflict, choice, decision
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Pattern: conflict, choice, decision
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Pattern: conflict, choice, decision
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Pattern: conflict, choice, decision

T1 TO

s1 4 S0 ——p»— 52
S0 =[1, 0, O]
S1=10, 0, 1]
S2 =0, 1, 0]



parallel indepencence, confluence

O

FO

TO T1

©
m
O

O—F

P1 01



parallel indepencence, confluence
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parallel indepencence, confluence
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parallel indepencence, confluence
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parallel indepencence, confluence

“diamond” pattern

S0

TL A
51

A TOTL M
53

A T0

52

S0=1[1,0,1,0]
S1=1[0,1,1,0]
S2=1[1,0,0, 1]
S3=10, 1,0, 1]



critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1



critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1



critical section, semaphore, mutex




critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1



critical section, semaphore, mutex

=1

+ enterCritical 2
‘+ leaveCritical 2
S0

-f leaveCritical 1
‘+ enterCritical 1
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=1
e enterCritical 2

‘JI' leaveCritical 2
S0

4 leavelCritical 1
1||' enterCritical 1

52

critical section, semaphore, mutex

S0=[1,0,1,0,1]
S1=[1,0,0,1,0]
S2=10,1,0,0, 1]

[*1 11 *1 11 *]
reachable in some path?



Infinite Capacity Petri net
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Infinite Capacity Petri net

TO, T1, T2, T3
e

|
m/.
& S0 = [0, 0]
,/. S1 = [w, 0]
0 S2 = [w, w]



Finite Capacity Petri net (FCPN)




Finite Capacity Petri net (FCPN)

S0 = [0, O]
S1=1[1,0]




Finite Capacity Petri net as Infinite Capacity net



Can transform to infinite capacity net

1. Add complimentary place p’ with initial marking x¢(p") = K(p)
2. Between each transition ¢ and complimentary places p’

e add arcs (t.p) or (p',t) where

o w(t,p') =w(p.t)

o w(p',t) =w(tp)



P/T PN with Inhibitor Arc (makes Turing equiv.)

PO P

TO

P2



P/T PN with Inhibitor Arc (makes Turing equiv.)

s0

S0 =2, 0, 0]
S1=1[1,0, 1]
S2 =10, 0, 2]

4 70

51

4 7D

52



P/T PN with Inhibitor Arc (finite capacity)



Representing a Petri net as a State Machine

Construct Reachability Graph
Reachability Graph is State Machine
States are tuples (p1,p2,....pn)
Events correspond to t; firing

May be infinite (w)



Finite State Automaton represented as a Petri Net
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Representing a State Machine as a Petri net

1. no output

2. with output

= automatic (though inefficient) transformation



FSA without output



FSA with output



Petri net models for Queueing Systems
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Abstract View

Capacity Constraints for Resource Conservation



Simple Server/Queue

arrival

queue idle

service_start

busy

=

service_end




Simple Server/Queue

arrival
queue idle

service_start

N J senvice_start
arrival ¥
O "
2

busy

=

service_end
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[queue, idle, busy]



Simple Server/Queue
departure modelled explicitly

arrival

queus idle

service_start

busy

service_end

departed



Simple Server/Queue
with server breakdown (and repair)

repaired

service_en

departed



Simple Server/Queue
with server breakdown (and repair)

arrival

queue

service_start repaired

=1 5 a - .
busy breakdown down ) / breakdokn .
arrival - e -

service_end service_end A&

Dreakdow .
departed \.



Modular Composition: Communication Protocol

Build incrementally:
1. Single transmitter: FSA vs. Petri net
2. Two transmitters competing for channel
Pros/Cons of Petri net models (depends on goals !):
e Petri net is more complex than FSA for single transmitter
e More insight
e Incremental modelling
e Modular modelling

e Intuitive modelling of concurrency



Single Transmitter FSA

ack received

transmit
=i

timeout

arr

Idle Message present Transmitting



Single transmitter

noMsg

arrival

msgPresent

transmitting




Single transmitter

noMsg

arrival

msgPresent

transmitting




Single transmitter

noMsg

arrival

msgPresent

transmitting




Single transmitter

noMsg

arrival

msgPresent

transmitting




Single transmitter

arrival

fromUppe

msgPresent

transmit

transmitting

timeout

»
>

noMsg

arrival

fromUppe

msgPresent

transmit

transmitting

ACKreceived




Two independent transmitters

. arrival(5)
arrival

accepted{1} rejected(

msgPresent{1}

msgPresent noMsg(1}

. transmit{1]}
transmit

timeout(1]}

ransmitting{1]}

> I
>
timeout

transmitting

ACKreceived(l

AcCKreceived




Two transmitters competing for a single communication channel




Analysis of Petri nets

Analysis of logical or qualitative behaviour.

Resource sharing = fair usage of resources:
e Boundedness
e Conservation
e Liveness and Deadlock
e State Reachability
e State Coverability
e Persistence

e Language Recognition



Boundedness

Example: upper bound on number of customers in queue.

Definition: A place p; € P in a Petri net with initial state xg is
k—bounded or k—safe if

x(p;) < k for all states in all possible sample paths.
A 1—bounded place is called safe.
If a place is k—bounded for some £, the place is bounded.

If all places are bounded, the Petri net is bounded.



Bounded vs. Unbounded

arrival

queuse idle

service_start

busy

service_end

departed



Conservation (invariants)

arrival

queuse idle

service_start

busy

service_end

departed

Sum of busy and idle marking is constant across all sample paths



Conservation (invariants): weighted sum

nolsg

2 X transmitting + 1 x 1dle + 1x commChannel = 2



Conservation

A Petri net with initial state xq is

conservative with respect to v = V1,72, ..., Vn| if
Y vix(pi) = constant

for all states in all possible sample paths.



Liveness and Deadlock

e Cyclic dependency = wait indefinitely
e Deadlock

e Deadlock avoidance: avoid certain states in sample paths



Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] —» deadlock



Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] —» deadlock



Deadlock in queueing system with rework
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Deadlock resolved (avoided)
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Deadlock resolved (avoided)
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L Iveness

Given initial state xg, a transition in a Petri net is:
e LO-live (dead): if the transition can never fire.

o L1-live: if there is some firing sequence from Xxg such that the

transition can fire at least once.

e L2-live: if the transition can fire at least k£ times for some given

positive integer k.

e [ 3-live: if there exists some infinite firing sequence in which the

transition appears infinitely often.

e L4-live: if the transition is L1-live for every possible state reached

from Xxo.
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Liveness example



T2

PO

TO

P1

Liveness example

T1is L1-live
T2 Is dead
T3 Is L3-live, not L4-live



T2

PO

TO

P1

Liveness example

4 80

A T0

51

S0 =[1, O]
S1 =0, 1]

T1is L1-live
T2 Is dead
T3 Is L3-live, not L4-live



State Reachability

e A state x in a Petri net is reachable from a state X if there exists

a sequence of transitions starting at Xg such that the state

eventually becomes x.
e Build/use reachability graph.

e Deadlock avoidance is a special case of reachability.



State Coverability

e |In a Petri net with initial state xg, a state y is coverable if there

exists a sequence of transitions starting at x; such that the state

eventually becomes x and z(p;) > y(p;).

e Related to L1-liveness: minimum number of tokens required to

enable a transition.



Persistence

More than one transition enabled by the same set of conditions

(choice, undeterminism).
If one fires, does the other remain enabled ?

A Petri net is persistent if, for any two enabled transitions, the

firing of one cannot disable the other.

Non-interruptedness (of multiple processes).



Language Recognition

Language defined by Petri net

set of transition sequences which can fire



Fairness



Time



Colour



Coverability Notation

e Root node
e [erminal node

e Duplicate node



Coverability Notation

e Node dominance

e [he symbol w represents infinity
X>qYy
For all i such that 2(p;) > y(p;), replace z(p;) by w

wt+k=w=w-—Fk



Coverability Tree Construction

L. Initialize x = x¢ (initial state)

2. Fore each new node x,
evaluate the transition function f(x.t;) for all t; € T

(a) if f(x,t;) is undefined for all ¢; € T', then x is a terminal node.

(b) if f(x.t;) is defined for some t; € T,
create a new node x" = f(x,1;).
. if 2(p;) = w for some p;, set 2/(p;) = w.
Ii. If there exists a node y in the path from root node xq
(included) to x such that x" >, y, set 2'(p;) = w for all p;
such that 2/(p;) > y(p;)
iii. Otherwise, set X" = f(x,%;).

3. Stop if all new nodes are either terminal or duplicate



Coverability Example




Coverability Example




Applications of the Coverability Tree

Boundedness: w does not appear in coverability tree
Bounded Petri net = reachability graph
Conservation: ~; = 0 for w positions

Inverse problem: what are v and C' 7

Coverability: inspect coverability tree

Limitations: deadlock detection



Path Conditions: LTL and CTL
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