(Place/Transition) Petri Nets

Hans.Vangheluwe@uantwerpen.be

FLANDERS

Universiteit An symo Nexor
Antwerpen B’ Antwerp Systems & Software Modelling Cyber-Physical Systems M A K E

University of Antwerp University of Antwerp

MANUFACTURING INNOVATION NETWORK

mailto:Hans.Vangheluwe@uantwerpen.be

Petri Nets

. Finite State Automata

. Petri net notation and definition (no dynamics)
. Introducing State: Petri net marking
. Petri net dynamics

. Capacity Constrained Petri nets

. Petri net models for . ..

e [SA
e Nondeterminism
e Data Flow Computation

e Communication Protocols

7. Queueing Systems
8. Petri nets vs. State Automata

9. Analysis of Petri nets
e Boundedness
e Liveness and Deadlock
e State Reachability
e State Coverability
e Persistence

e Language Recognition
10. The Coverability Tree

11. Extensions: colour, time, ...

12. LTLand CTL

Finite State Automaton

(E:X:f:JTU:F)
e F is a finite alphabet
e X is a finite state set

e f is a state transition function,
f: X xE—X

e 1 Is an initial state, g € X
e ['is the set of final states

Dynamics (z is next state):

FSA graphical /visual notation: State Transition
Diagram

FSA Operational Semantics

Rule 1 (priority 3) Locate Initial Current State
1 1
{KHNM i
J
o d
2
Current State
Rule 2 (priority 1) State Transition
"B cusront Stean urrent State
) " condition: W

L__matu:hed (4).input == input[0] y,

, _ 3 fcoplﬁmcopmm
. — — - 5
1{:;”::‘ <ANY>1 <ANY> .:'rf-'hN‘F\'-:\u @ T
~ .
|f action: \|
remove(input[0])
N 7 S
Rule 3 (priority 2) Local State Transition
] Current State Current State
4 condition: N

@atched{xl}l.input == input[ﬂ]/,

4 =

— 4
__-/ ;'GQF‘IE CECOPIED =
i 1Y

o

-\\ s . ™~ Fa _
{<Anys e—" f action: | {coPIEDj—
~ \remove(inpuloh) N

Simulation steps

— AToM3 v0.2.1 using: Finite StateAutomata 0 X
File Model Transformation Graphics
‘Hniteﬁtate.ﬂ-utumata Model ops | Editentity | Connect | Delete | Insertmodel | Expand model | Exit
Visual ops Smooth | Insert point | Delete point | Change connector |
@ — Edit value e
new | edit | delete ||
(]
1
0
£
oK cancel |
— Graph- Grammar execution controls 0 X
Executing Graph- Grammar: FSASimulator
Last executed rule:
Step | Continuous | Close |
I —
=

I~ I

Rule 1
IEREERRERE]
Current State
Init
input 1
Rule 2
JITIIIY 2 0
[l current State
end of input

Final Action
llllllllllllllllllllllllll’- “Accept Input"

input 0

Rule 2
EEEEREERRE]p-

input 0

Rule 2
IITLTTERIE] =

Imit

Init

Cument State

State Automaton

(E X, T f, :I:U)
e [is a countable event set
e X is a countable state space

e ['(x) is the set of feasible or enabled events
re X, I'(x) CE

e f is a state transition function,
f: X x E— X, only defined for e € I'(x)

e 1 is an initial state, g € X

(£, X. T, f)

omits xp and describes a class of State Automata.

State Automata for Queueing Systems

M fj Y I
Y,
pu i Hﬂkﬂﬂijﬂ A
—‘4—.\-) \ | I."l I"-,I : / \ / -
- i e o0 Departure
Arrival) Queue F Cashier
Physical View
7 |"/ \n -
-, \ / Departure
N/
Arrival Cashier

Queue

[IAT distribution] [ST distribution]

Abstract View

State Automata for Queueing Systems:
customer centered

E ={a,d}
X =1{0,1,2,...}
D(x) = {a.d}. ¥z > 0:T(0) = {a}
flo.a) =2 +1,¥z >0
flo d) =2 —1,%z >0

State Automata for Queueing Systems:
server centered (with breakdown)

State Automata for Queueing Systems: server
centered (with breakdown)

E ={s,c.b,r}

Events: s denotes service starts, ¢ denotes service completes, b

denotes breakdown, r denotes repair.
X ={I,B,D}
State: [denotes idle, B denotes busy, D denotes broken down.
I'(I) = {s}.T(B) = {c,b},I'(D) = {r}
f(I,5) =B, f(B,c) = I, {(B,b) = D, {(D,r) = I

Limitiations/extensions of State Automata

Adding time ?

Hierarchical modelling 7
Concurrency by means of x
States are represented explicitly

Specifying control logic, synchronisation 7

Petri nets

Formalism similar to FSA
Graphical/Visual notation
C.A. Petri 1960s

Additions to FSA:
— Explicitly (graphically/visually) represent when event is enabled

— describe control logic
— Elegant notation of concurrency

— Express non-determinism

Petri net notation and definition (no dynamics)

(P,T, A, w)

of P ={py,po,...} is a finite set of places
o I'={t1.ta,...} is a finite set of transitions
e AC(PxT)u(T x P)is a set of arcs

o w: A — Nisa weight function

Note: no need for countable P and T'.

Derived Entities

[(t;) ={pi: (pi.t;) € A} set of input places to transition t;

(= conditions for transition)

O(t;) ={p;: (t;.p;) € A} set of output places from transition t;
(= affected by transition)

Transitions = events
similarly: input- and output-transitions for p;

graphical /visual representation: Petri net graph (multigraph)

02

T1

Example Petri Net

P = {H, 02, H20, P3, P4}
T={t T1, T2}
A= {(H2,0), (O2,1), (02, T1), (t, H20), (t, P3), (H20, T2), (T2, P4)}

w((H2,0) = 2, w((t, P3)) = 3, w((02,1)) = w((02, T1)) = w((t, H20)) = w((H20, T2)) = w((T2, P4)) = 1
I(t) = {H, 02}, I(T1) = {02}, I(T2) = {H20}

O(t) = {P3, H20}, O(T1) = {}, O(T2) = {P4}

Pure Petri net

1

PO TO

e No self-loops:
Api € Pit; €T : (pi.tj) € A (tj,pi) € A

e Can convert impure to pure Petri net

Introducing State: Petri net Markings

Conditions met ? Use tokens in places
Token assignment = marking x
r:P—N
A marked Petri net
(P, T, A, w.z0)

20 is the initial marking

The state x of a marked Petri net

Number of tokens need not be bounded (cfr. State Automata

states).

02

T1

Example Marked Petri Net

P ={H, 02, H20, P3, P4}
T={tT1, T2}
A={(H2,t), (02,1, (02, T1), (t, H20), (t, P3), (H20, T2), (T2, P4)}

w((H2,1)) = 2, w((t, P3)) = 3, w((02,t)) = w((02, T1)) = w((t, H20)) = w((H20, T2)) = w((T2, P4)) =1
I(t) = {H, 02}, I(T1) = {02}, I(T2) = {H20}

O(t) = {P3, H20}, O(T1) = {}, O(T2) = {P4}

x=[9,1,1,0,0] corresponding to places [H, 02, H20, P3, P4]

State Space of Marked Petri net

e All n-dimensional vectors of nonnegative integer markings

X =N"
e Transition t; € 1" is enabled if

;r(p.f_) > it-’(p-aiij)f?”pi - I(tj)

Example Marked Petri Net
Enabled transitions in red

Petri Net Dynamics

State Transition Function f of marked Petri net (P.1., A, w, x()
f N"xT — N"
is defined for transition ¢; € 1" if and only if
x(pi) = w(pi, t;), Vpi € 1(t;)
If f(x,%;) is defined, set X" = f(x,?;) where
Y (pi) = 2(pi) — w(pi.t;) + wit;, p)
e State transition function f based on structure of Petri net

e Number of tokens need not be conserved (but can)

Algebraic Description of Dynamics

e Firing vector u: transition j firing
u=10,0,...,1,0,...,0
e |ncidence matrix A :
aj; = w(tj,pi) — w(pi,t;)

e State Equation
x" = x + uA

Semantics

e sequential vs. parallel

e Handle nondeterminism:
1. User choice
. Priorities

2
3. Probabilities (Monte Carlo)
4

. Reachability Graph (enumerate all choices)

Example Marked Petri Net

sS4

52

T1 M

T1 b

e e
!!!!!!!
1111111
7777777

[e e e a—

O-"NM<LO O
nNnuuuummmy

55

t o

t o

so

s (sl
| T2
53 — b

A T2

S6

Marking corresponds to [H, O2, H20, P3, P4]

Pattern: sequence

PO

TD

Pl

T1

P2

Pattern: sequence

PO

TD

Pl

T1

P2

Pattern: sequence

PO

TD

Pl

T1

P2

PO

TD

P1

T1

P2

Pattern: sequence

Pattern: sequence

PO

TO

P1L

T1

p2

Pattern: sequence

PO

TO

P1L

T1

p2

S0

Pattern: sequence

S
¥l
.) ~ao
»— 51 54
| w1l
“AT0
S3
S0=1[2,0, 0]
S1=1[1,1, 0]
S2=[1,0, 1]
S3=]0, 2, 0]
S4 =10, 1, 1]
S5=]0,0, 2]

S5

Pattern: split

PO

TO

F1

P2

Pattern: split

PO

TO

F1

P2

Pattern: split

PO

TO

F1

P2

Pattern: split

T0O
S0 > 51
S0 =[1, 0, 0]

S1=10, 1, 1]

Pattern: join

F1

TO

PO

P2

Pattern: join

F1

TO

PO

P2

Pattern: join

F1

TO

PO

P2

Pattern: join

S0 —

Pattern: conflict, choice, decision

PO

TO T1

P1 P2

Pattern: conflict, choice, decision

PO

TO T1

P1 P2

TO

Fl

PO

Pattern: conflict, choice, decision

FO

T1 T0O T1

p2 P1 P2

Pattern: conflict, choice, decision

T1 TO

s1 4 S0 ——p»— 52
S0 =[1, 0, O]
S1=10, 0, 1]
S2 =0, 1, 0]

parallel indepencence, confluence

O

FO

TO T1

©
m
O

O—F

P1 01

parallel indepencence, confluence

O

FO

TO T1

©
e
O

O—*

P1 01

parallel indepencence, confluence

PO PO

TO Tl TO T1

@
nie
©

O—4—0

©
e
O

O—4—0O

F1 01 Pl 01

parallel indepencence, confluence

FO

TO T1

@
m
©

O—4—0O

P1 01

parallel indepencence, confluence

“diamond” pattern

S0

TL A
51

A TOTL M
53

A T0

52

S0=1[1,0,1,0]
S1=1[0,1,1,0]
S2=1[1,0,0, 1]
S3=10, 1,0, 1]

critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1

critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1

critical section, semaphore, mutex

critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1

critical section, semaphore, mutex

=1

+ enterCritical 2
‘+ leaveCritical 2
S0

-f leaveCritical 1
‘+ enterCritical 1

52

nuuwvm

N - O

— r—r—

[
rO0

cor
ocro

L= P

=1
e enterCritical 2

‘JI' leaveCritical 2
S0

4 leavelCritical 1
1||' enterCritical 1

52

critical section, semaphore, mutex

S0=[1,0,1,0,1]
S1=[1,0,0,1,0]
S2=10,1,0,0, 1]

[*1 11 *1 11 *]
reachable in some path?

Infinite Capacity Petri net

_

Tl

RS S

k=ro

TO

Infinite Capacity Petri net

TO, T1, T2, T3
e

|
m/.
& S0 = [0, 0]
,/. S1 = [w, 0]
0 S2 = [w, w]

Finite Capacity Petri net (FCPN)

Finite Capacity Petri net (FCPN)

S0 = [0, O]
S1=1[1,0]

Finite Capacity Petri net as Infinite Capacity net

Can transform to infinite capacity net

1. Add complimentary place p’ with initial marking x¢(p") = K(p)
2. Between each transition ¢ and complimentary places p’

e add arcs (t.p) or (p',t) where

o w(t,p') =w(p.t)

o w(p',t) =w(tp)

P/T PN with Inhibitor Arc (makes Turing equiv.)

PO P

TO

P2

P/T PN with Inhibitor Arc (makes Turing equiv.)

s0

S0 =2, 0, 0]
S1=1[1,0, 1]
S2 =10, 0, 2]

4 70

51

4 7D

52

P/T PN with Inhibitor Arc (finite capacity)

Representing a Petri net as a State Machine

Construct Reachability Graph
Reachability Graph is State Machine
States are tuples (p1,p2,....pn)
Events correspond to t; firing

May be infinite (w)

Finite State Automaton represented as a Petri Net

II{
dispensed0c

deplO
epic dep20c

Oc

\.i/":‘\\.-'

dep50c
=1
w=1.0

dep20c

dispenseS0ic I 50c

s5 __-:I_—:- 206

y dispensesol S0
' -:|—|:-F-’£;;,.--’
..-"'A'
—_dep20c epl0c ¥ e Y
~__ depl
lep20c

54—

wn

n
ahrwWNEO

OCOr OO0

OO0OO0OrR OO

9]

n
I T TR TR
S oo ocor
ORrO0OO0O0O
POOOOO
LLeLeere

S H H H : 1
S H H 1 1 1

[Oc, 10c, 20c, 30c, 40c, 50c]

modelling the “current state” — single token

53

Representing a State Machine as a Petri net

1. no output

2. with output

= automatic (though inefficient) transformation

FSA without output

FSA with output

Petri net models for Queueing Systems

O 0O 0O Q
P nll T, nll T afll 2
. ' | / \ | \ !
T{,-H I". f I". ."I I". |," ——
— OO0 [o]e] 00 Departure
Arrival Queue Cashier
Physical View
N ﬁﬁf “\ E——
—f:—j—*' \ / Departure
Arrival Cashier
Queue
[IAT distribution] [ST distribution]

Abstract View

Capacity Constraints for Resource Conservation

Simple Server/Queue

arrival

queue idle

service_start

busy

=

service_end

Simple Server/Queue

arrival
queue idle

service_start

N J senvice_start
arrival ¥
O "
2

busy

=

service_end

7))
-
A=

w
N - O
Il
SIS
e
o

N
o
Il:ll—l

[queue, idle, busy]

Simple Server/Queue
departure modelled explicitly

arrival

queus idle

service_start

busy

service_end

departed

Simple Server/Queue
with server breakdown (and repair)

repaired

service_en

departed

Simple Server/Queue
with server breakdown (and repair)

arrival

queue

service_start repaired

=1 5 a - .
busy breakdown down) / breakdokn .
arrival - e -

service_end service_end A&

Dreakdow .
departed \.

Modular Composition: Communication Protocol

Build incrementally:
1. Single transmitter: FSA vs. Petri net
2. Two transmitters competing for channel
Pros/Cons of Petri net models (depends on goals !):
e Petri net is more complex than FSA for single transmitter
e More insight
e Incremental modelling
e Modular modelling

e Intuitive modelling of concurrency

Single Transmitter FSA

ack received

transmit
=i

timeout

arr

Idle Message present Transmitting

Single transmitter

noMsg

arrival

msgPresent

transmitting

Single transmitter

noMsg

arrival

msgPresent

transmitting

Single transmitter

noMsg

arrival

msgPresent

transmitting

Single transmitter

noMsg

arrival

msgPresent

transmitting

Single transmitter

arrival

fromUppe

msgPresent

transmit

transmitting

timeout

»
>

noMsg

arrival

fromUppe

msgPresent

transmit

transmitting

ACKreceived

Two independent transmitters

. arrival(5)
arrival

accepted{1} rejected(

msgPresent{1}

msgPresent noMsg(1}

. transmit{1]}
transmit

timeout(1]}

ransmitting{1]}

> I
>
timeout

transmitting

ACKreceived(l

AcCKreceived

Two transmitters competing for a single communication channel

Analysis of Petri nets

Analysis of logical or qualitative behaviour.

Resource sharing = fair usage of resources:
e Boundedness
e Conservation
e Liveness and Deadlock
e State Reachability
e State Coverability
e Persistence

e Language Recognition

Boundedness

Example: upper bound on number of customers in queue.

Definition: A place p; € P in a Petri net with initial state xg is
k—bounded or k—safe if

x(p;) < k for all states in all possible sample paths.
A 1—bounded place is called safe.
If a place is k—bounded for some £, the place is bounded.

If all places are bounded, the Petri net is bounded.

Bounded vs. Unbounded

arrival

queuse idle

service_start

busy

service_end

departed

Conservation (invariants)

arrival

queuse idle

service_start

busy

service_end

departed

Sum of busy and idle marking is constant across all sample paths

Conservation (invariants): weighted sum

nolsg

2 X transmitting + 1 x 1dle + 1x commChannel = 2

Conservation

A Petri net with initial state xq is

conservative with respect to v = V1,72, ..., Vn| if
Y vix(pi) = constant

for all states in all possible sample paths.

Liveness and Deadlock

e Cyclic dependency = wait indefinitely
e Deadlock

e Deadlock avoidance: avoid certain states in sample paths

Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] —» deadlock

Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] —» deadlock

Deadlock in queueing system with rework

S0

4 arrival
N

51

T

|

| .,

A zccepted
arrival W ~_reworkReturn (87
', s2 4 I\
S3 AN 4 complDefect

4 arrival
- N | N\ > accepted
511 - - 515
™ . \4\-5+|'-.-'i|-: e_star . :
‘1'\5”1 e*-t edleworkRetube
| A s4

ss

ppiDefect complDefect &

|'»:~j-:~-:te-/:l/

55 \"_\.-I-:'IT||I'|'3:1-:“:'-:
._59 7 s10 ..\1...-:-I-IT||I-|'Z:1-I--I--I

——accepted
" A reworkReturn l

service_start, n'd

reworkReturn B
513 camplDefect/ '
complGooda =L
516 “complDefeet
520 "".‘.L-_._:_.|T.|'.I Good
519

Thg ervice_start

sig

[queueFree, queue, rework] = [0, 1, 1] —» deadlock

Deadlock resolved (avoided)

accepted

queue-g

service_start

departed .

Deadlock resolved (avoided)

e
rejected &
e
S8
_,4"’-.-' /
senvice st’g_rt""’ XreworkRetum
complGood — sz /
si6 i
rmWéDefect
517

-

~

ccepted
=2 i tart
53 : ——senvice_sta

reworkRetl mw i complGood
\ s (s
complDefacta
57 |
acc epﬁ eRfrival | |
.."I. arrival *I arrival I'
55) N |
——_ sSefvice_start | \

. — SEfvIce_ complGood

reﬁ“'&kRetU"”Yx, arrivalil‘ — sg — —— EF— S10
- .
-~ et -
- e T A \
e compil okt N
511 \
Y
4 accepted \{accepted
N\
accepted, o poo) complGood
complDe si2 »— 514
515 reworkRetu r?w\

—senvice_start

1 s18

compl feft/

520

___complGood

519

L Iveness

Given initial state xg, a transition in a Petri net is:
e LO-live (dead): if the transition can never fire.

o L1-live: if there is some firing sequence from Xxg such that the

transition can fire at least once.

e L2-live: if the transition can fire at least k£ times for some given

positive integer k.

e [3-live: if there exists some infinite firing sequence in which the

transition appears infinitely often.

e L4-live: if the transition is L1-live for every possible state reached

from Xxo.

T2

PO

TO

P1

Liveness example

T2

PO

TO

P1

Liveness example

T1is L1-live
T2 Is dead
T3 Is L3-live, not L4-live

T2

PO

TO

P1

Liveness example

4 80

A T0

51

S0 =[1, O]
S1 =0, 1]

T1is L1-live
T2 Is dead
T3 Is L3-live, not L4-live

State Reachability

e A state x in a Petri net is reachable from a state X if there exists

a sequence of transitions starting at Xg such that the state

eventually becomes x.
e Build/use reachability graph.

e Deadlock avoidance is a special case of reachability.

State Coverability

e |In a Petri net with initial state xg, a state y is coverable if there

exists a sequence of transitions starting at x; such that the state

eventually becomes x and z(p;) > y(p;).

e Related to L1-liveness: minimum number of tokens required to

enable a transition.

Persistence

More than one transition enabled by the same set of conditions

(choice, undeterminism).
If one fires, does the other remain enabled ?

A Petri net is persistent if, for any two enabled transitions, the

firing of one cannot disable the other.

Non-interruptedness (of multiple processes).

Language Recognition

Language defined by Petri net

set of transition sequences which can fire

Fairness

Time

Colour

Coverability Notation

e Root node
e [erminal node

e Duplicate node

Coverability Notation

e Node dominance

e [he symbol w represents infinity
X>qYy
For all i such that 2(p;) > y(p;), replace z(p;) by w

wt+k=w=w-—Fk

Coverability Tree Construction

L. Initialize x = x¢ (initial state)

2. Fore each new node x,
evaluate the transition function f(x.t;) for all t; € T

(a) if f(x,t;) is undefined for all ¢; € T', then x is a terminal node.

(b) if f(x.t;) is defined for some t; € T,
create a new node x" = f(x,1;).
. if 2(p;) = w for some p;, set 2/(p;) = w.
Ii. If there exists a node y in the path from root node xq
(included) to x such that x" >, y, set 2'(p;) = w for all p;
such that 2/(p;) > y(p;)
iii. Otherwise, set X" = f(x,%;).

3. Stop if all new nodes are either terminal or duplicate

Coverability Example

Coverability Example

Applications of the Coverability Tree

Boundedness: w does not appear in coverability tree
Bounded Petri net = reachability graph
Conservation: ~; = 0 for w positions

Inverse problem: what are v and C' 7

Coverability: inspect coverability tree

Limitations: deadlock detection

Path Conditions: LTL and CTL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

