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Finite State Automaton

(E:X:f:JTU:F)
e F is a finite alphabet
e X is a finite state set

e f is a state transition function,
f: X xE—X

e 1 Is an initial state, g € X
e ['is the set of final states

Dynamics (z is next state):



FSA graphical /visual notation: State Transition
Diagram




FSA Operational Semantics
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Simulation steps
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State Automaton

(E X, T f, :I:U)
e [ is a countable event set
e X is a countable state space

e ['(x) is the set of feasible or enabled events
re X, I'(x) CE

e f is a state transition function,
f: X x E— X, only defined for e € I'(x)

e 1 is an initial state, g € X

(£, X. T, f)

omits xp and describes a class of State Automata.



State Automata for Queueing Systems
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State Automata for Queueing Systems:
customer centered

E ={a,d}
X =1{0,1,2,...}
D(x) = {a.d}. ¥z > 0:T(0) = {a}
flo.a) =2 +1,¥z >0
flo d) =2 —1,%z >0



State Automata for Queueing Systems:
server centered (with breakdown)




Limitiations/extensions of State Automata

Adding time ?

Hierarchical modelling 7
Concurrency by means of x
States are represented explicitly

Specifying control logic, synchronisation 7



Petri nets

Formalism similar to FSA
Graphical/Visual notation
C.A. Petri 1960s

Additions to FSA:
— Explicitly (graphically/visually) represent when event is enabled

— describe control logic
— Elegant notation of concurrency

— Express non-determinism



Petri net notation and definition (no dynamics)

(P,T, A, w)

of P ={py,po,...} is a finite set of places
o I'={t1.ta,...} is a finite set of transitions
e AC(PxT)u(T x P)is a set of arcs

o w: A — Nisa weight function

Note: no need for countable P and T'.



Derived Entities

[(t;) ={pi: (pi.t;) € A} set of input places to transition t;

(= conditions for transition)

O(t;) ={p;: (t;.p;) € A} set of output places from transition t;
(= affected by transition)

Transitions = events
similarly: input- and output-transitions for p;

graphical /visual representation: Petri net graph (multigraph)
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Example Petri Net

P = {H, 02, H20, P3, P4}
T={t T1, T2}
A= {(H,1), (02,1), (02, T1), (t, H20), (t, P3), (H20, T2), (T2, P4)}

w((H,1) = 2, w((t, P3)) = 3, w((02,1)) = w((02, T1)) = w((t, H20)) = w((H20, T2)) = w((T2, P4)) = 1
I(t) = {H, 02}, I(T1) = {02}, I(T2) = {H20}

O(t) = {P3, H20}, O(T1) = {}, O(T2) = {P4}



Introducing State: Petri net Markings

Conditions met ? Use tokens in places
Token assignment = marking x
r:P—N
A marked Petri net
(P, T, A, w.z0)

20 is the initial marking

The state x of a marked Petri net

Number of tokens need not be bounded (cfr. State Automata

states).
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Example Marked Petri Net

P ={H, 02, H20, P3, P4}
T={tT1, T2}
A={(H2,t), (02,1, (02, T1), (t, H20), (t, P3), (H20, T2), (T2, P4)}

w((H2,1)) = 2, w((t, P3)) = 3, w((02,t)) = w((02, T1)) = w((t, H20)) = w((H20, T2)) = w((T2, P4)) =1
I(t) = {H, 02}, I(T1) = {02}, I(T2) = {H20}

O(t) = {P3, H20}, O(T1) = {}, O(T2) = {P4}

x=[9,1,1,0,0] corresponding to places [H, 02, H20, P3, P4]



State Space of Marked Petri net

e All n-dimensional vectors of nonnegative integer markings

X =N"
e Transition t; € 1" is enabled if

;r(p.f_) > it-’(p-aiij)f?”pi - I(tj)



Example Marked Petri Net
Enabled transitions in red




Petri Net Dynamics

State Transition Function f of marked Petri net (P.1., A, w, x()
f N"xT — N"
is defined for transition ¢; € 1" if and only if
x(pi) = w(pi, t;), Vpi € 1(t;)
If f(x,%;) is defined, set X" = f(x,?;) where
Y (pi) = 2(pi) — w(pi.t;) + wit;, p)
e State transition function f based on structure of Petri net

e Number of tokens need not be conserved (but can)



Algebraic Description of Dynamics

e Firing vector u: transition j firing
u=10,0,...,1,0,...,0
e |ncidence matrix A :
aj; = w(tj,pi) — w(pi,t;)

e State Equation
x" = x + uA



Example Marked Petri Net
Enabled transitions in red




Semantics

e sequential vs. parallel

e Handle nondeterminism:
1. User choice
. Priorities

2
3. Probabilities (Monte Carlo)
4

. Reachability Graph (enumerate all choices)



Example Marked Petri Net
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Marking corresponds to [H, O2, H20, P3, P4]



Example Marked Petri Net

2 sa
52 \
Tl &
T1L &

o S0=[9,1,1,0,0]
P& S1=0[9,1,0,0,1]
. | S2=[9,0,1,0,0]
S3=[7,0,2,3,0]
-. S4=1[9,0,0,0,1]
Y ‘X S5=[7,0, 1, 3, 1]
- 2 S6=[7,0,0,3, 2]

A T2

S6

Reachability graph =
compact notation of all possible “sample paths” (behaviour traces) =

{s0 -T1-> s2 -T2-> s4, SO -T2-> S1 -T1-> S4,
SO -T2-> S1 -t-> S5 -T2-> S6, SO -t-> S3 -T2-> S5 -T2-> S6}



Pattern: sequence
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Pattern: sequence
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Pattern: sequence
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Semantics

e sequential vs. parallel

e Handle nondeterminism:
1. User choice
. Priorities

2
3. Probabilities (Monte Carlo)
4

. Reachability Graph (enumerate all choices)
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Pattern: sequence
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Pattern: sequence
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S0

Pattern: sequence
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S0=1[2,0, 0]
S1=1[1,1, 0]
S2=[1,0, 1]
S3=]0, 2, 0]
S4 =10, 1, 1]
S5=]0,0, 2]

S5



Pattern: split
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Pattern: split
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Pattern: split
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Pattern: split

T0O
S0 > 51
S0 =[1, 0, 0]

S1=10, 1, 1]



Pattern: join

F1
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Pattern: join
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Pattern: join
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Pattern: join

S0 —



Pattern: conflict, choice, decision
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Pattern: conflict, choice, decision
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Pattern: conflict, choice, decision
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Pattern: conflict, choice, decision

T1 TO

s1 4 S0 ——p»— 52
S0 =[1, 0, O]
S1=10, 0, 1]
S2 =0, 1, 0]



parallel indepencence, confluence
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parallel indepencence, confluence
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parallel indepencence, confluence
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parallel indepencence, confluence
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“parallel indepencence”
“confluence”
“diamond” pattern

S0

T1 A A 70
51 g2

4 T0TL K
S3

S0=1[1,0,1,0]
S1=1[0,1,1,0]
S2=[1,0,0,1]
S3=10, 1,0, 1]



critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1



critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1



critical section, semaphore, mutex




critical section, semaphore, mutex

leaveCritical 2

leaveCritical_1



critical section, semaphore, mutex

=1

+ enterCritical 2
‘+ leaveCritical 2
S0

-f leaveCritical 1
‘+ enterCritical 1
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=1
e enterCritical 2

‘JI' leaveCritical 2
S0

4 leavelCritical 1
1||' enterCritical 1

52

critical section, semaphore, mutex

S0=[1,0,1,0,1]
S1=[1,0,0,1,0]
S2=10,1,0,0, 1]

[*1 11 *1 11 *]
reachable in some path?



Infinite Capacity Petri net
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Infinite Capacity Petri net

TO, T1, T2, T3
e

|
m/.
& S0 = [0, 0]
,/. S1 = [w, 0]
0 S2 = [w, w]



Finite Capacity Petri net (FC P/T PN)




Finite Capacity Petri net (FC P/T PN)

S0 = [0, O]
S1=1[1,0]




Finite Capacity Petri net
as augmented Infinite Capacity Petri net?




Finite Capacity Petri net
as augmented Infinite Capacity Petri net




Finite Capacity Petri net
as augmented Infinite Capacity Petri net

1. Add complimentary place p’ with initial marking 2¢(p’) = K(p) - xy
%

2. Between each transition ¢ and complimentary places p’
e add arcs (t.p") or (p'.t) where

w(p,t)
w(t, p)

o w(t,p)

o w(p'.t)

— same “expressiveness’
- FInite Capacity Is “syntactic sugar”



P/T PN with Inhibitor Arc (makes Turing equiv.)

PO P

TO

P2



P/T PN with Inhibitor Arc (makes Turing equiv.)

s0

S0 =2, 0, 0]
S1=1[1,0, 1]
S2 =10, 0, 2]

4 70

51

4 7D

52



P/T PN with Inhibitor Arc (finite capacity)




P/T PN with Inhibitor Arc (finite capacity)




Representing a Petri net as a State Machine

Construct Reachability Graph
Reachability Graph is State Machine
States are tuples (p1,p2,....pn)
Events correspond to t; firing

May be infinite (both in size and in marking w)



Finite State Automaton represented as a Petri Net
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Representing a State Machine as a Petri net

1. no output

2. with output

= automatic (though inefficient) transformation



FSA without output
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FSA without output

C—¥ — ¢ N
N




FSA without output



FSA without output




FSA with output (and communication)



FSA with output (and communication)




Fairness, Time

... TPPN, TTPN

Tte SULCE

bT-cnpo



Colour

~ e
g

C PN §y,\;’ws:g

http://cpntools.org/


http://cpntools.org/

Petri net models for Queueing Systems

O 0O 0O Q
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[IAT distribution] [ST distribution]

Abstract View

Capacity Constraints for Resource Conservation



Simple Server/Queue

arrival

queue idle

service_start

busy

=

service_end




Simple Server/Queue

arrival
queue idle

service_start

N J senvice_start
arrival ¥
O "
2

busy

=

service_end
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[queue, idle, busy]



Simple Server/Queue
departure modelled explicitly

arrival

queus idle

service_start

busy

service_end

departed



Simple Server/Queue
with server breakdown (and repair)

repaired

service_en

departed



Simple Server/Queue
with server breakdown (and repair)

arrival

queue

service_start repaired

=1 5 a - .
busy breakdown down ) / breakdokn .
arrival - e -

service_end service_end A&

Dreakdow .
departed \.



Modular Composition: Communication Protocol

Build incrementally:
1. Single transmitter: FSA vs. Petri net
2. Two transmitters competing for channel
Pros/Cons of Petri net models (depends on goals !):
e Petri net is more complex than FSA for single transmitter
e More insight
e Incremental modelling
e Modular modelling

e Intuitive modelling of concurrency



Single Transmitter FSA

ack received

transmit
=i

timeout

arr

Idle Message present Transmitting



Single transmitter

noMsg

arrival

msgPresent

transmitting




Single transmitter

noMsg

arrival

msgPresent

transmitting




Single transmitter

noMsg

arrival

msgPresent

transmitting




Single transmitter

noMsg

arrival

msgPresent

transmitting




Single transmitter

arrival

fromUppe

msgPresent

transmit

transmitting

timeout

»
>

noMsg

arrival

fromUppe

msgPresent

transmit

transmitting

ACKreceived




Two independent transmitters

. arrival(5)
arrival

accepted{1} rejected(

msgPresent{1}

msgPresent noMsg(1}

. transmit{1]}
transmit

timeout(1]}

ransmitting{1]}

> I
>
timeout

transmitting

ACKreceived(l

AcCKreceived




Two transmitters competing for a single communication channel




Analysis of Petri nets

of properties of interest

Analysis of logical or qualitative behaviour.

Resource sharing = fair usage of resources:
e Boundedness
e Conservation
e Liveness and Deadlock
e State Reachability
e State Coverability
e Persistence

e Language Recognition



Boundedness

Example: upper bound on number of customers in queue.

Definition: A place p; € P in a Petri net with initial state xg is
k—bounded or k—safe if

x(p;) < k for all states in all possible sample paths.
A 1—bounded place is called safe.
If a place is k—bounded for some £, the place is bounded.

If all places are bounded, the Petri net is bounded.



Bounded vs. Unbounded

arrival

queuse idle

service_start

busy

service_end

departed



Conservation (invariants)

arrival

queuse idle

service_start

busy

service_end

departed

Sum of busy and idle marking is constant across all sample paths



Conservation (invariants): weighted sum

nolsg

2 X transmitting + 1 x 1dle + 1x commChannel = 2



Conservation

A Petri net with initial state xq is

conservative with respect to v = V1,72, ..., Vn| if
Y vix(pi) = constant

for all states in all possible sample paths.



Liveness and Deadlock

e Cyclic dependency = wait indefinitely
e Deadlock

e Deadlock avoidance: avoid certain states in sample paths



Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] —» deadlock



Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] —» deadlock



Deadlock in queueing system with rework
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Deadlock resolved (avoided)
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Deadlock resolved (avoided)
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L Iveness

Given initial state xg, a transition in a Petri net is:
e LO-live (dead): if the transition can never fire.

o L1-live: if there is some firing sequence from Xxg such that the

transition can fire at least once.

e L2-live: if the transition can fire at least k£ times for some given

positive integer k.

e [ 3-live: if there exists some infinite firing sequence in which the

transition appears infinitely often.

e L4-live: if the transition is L1-live for every possible state reached

from Xxo.
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Liveness example



T2

PO

TO

P1

Liveness example

TO Is L1-live
T1 is dead
T2 I1s L3-live, not L4-live
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Liveness example

4 80

A T0

51

S0 =[1, O]
S1 =0, 1]

TO Is L1-live
T1 is dead
T2 I1s L3-live, not L4-live



Coverability Notation

e Root node
e [erminal node

e Duplicate node



Coverability Notation

e Node dominance

e [he symbol w represents infinity
X>qYy
For all i such that 2(p;) > y(p;), replace z(p;) by w

wt+k=w=w-—Fk



Coverability Tree Construction

L. Initialize x = x¢ (initial state)

2. Fore each new node x,
evaluate the transition function f(x.t;) for all t; € T

(a) if f(x,t;) is undefined for all ¢; € T', then x is a terminal node.

(b) if f(x.t;) is defined for some t; € T,
create a new node x" = f(x,1;).
. if 2(p;) = w for some p;, set 2/(p;) = w.
Ii. If there exists a node y in the path from root node xq
(included) to x such that x" >, y, set 2'(p;) = w for all p;
such that 2/(p;) > y(p;)
iii. Otherwise, set X" = f(x,%;).

3. Stop if all new nodes are either terminal or duplicate



Example




Reachability Tree (Graph)
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Reachability Tree (Graph)
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Coverability Tree
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Coverability Tree

1, Gy 0]



Coverability Tree (Graph)




PO’

Reachability Tree/Graph vs. Coverability Tree (Graph)

P2’

T2

(0,

[ll

,I _ abstraction -
TO .
(morphism)
1, 1, 0]
T2
lTl\
[o, o, 1, 1]
0, 1, 0]
-
1, 2, 0]
T2
JTI\
[o, 0, 2, 1]
0, 2, 0]
T0O
\
1, 2, 0] T2
Tl\
\ (o, 1, 3, 1]
0, 3, 0]
TO
\
1, 4, 0]
T2
jTl\
(o, 1, 4, 1]
0, 4, 0]
TO

infinite

finite



PO’

Reachability Tree/Graph vs. Coverability Tree (Graph)
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analysis property: reachable [1, 0, 3, 0]



Applications of the Coverability Tree

Boundedness: w does not appear in coverability tree
Bounded Petri net = reachability graph
Conservation: ~; = 0 for w positions

Inverse problem: what are v and C' 7

Coverability: inspect coverability tree

Limitations: deadlock detection



specifying and checking properties over all traces
2001WETFSP “specification and verification”

properties
requirements assumptions
(on the system | (on the unknowns, e.g.,
behavior) environment behavior) Sysven

formal system
specifications model

v_control

controller that render  no such
the system to controller
satisfy the spec’s exists

satisfied violated
(+certificate)  (+counterexample)

Principles of Model
Checking,

Christel Baier and
Joost-Pieter Katoen.
MIT Press, 2008.

Principles of Model Checking

e Chapter 5

slides from Richard M. Murray @ EECI 2012
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Marked Petri Net

P ={H, 02, H20, P3, P4}
T={tT1, T2}
A={(H2,t), (02,1, (02, T1), (t, H20), (t, P3), (H20, T2), (T2, P4)}

w((H2,1)) = 2, w((t, P3)) = 3, w((02,t)) = w((02, T1)) = w((t, H20)) = w((H20, T2)) = w((T2, P4)) =1
I(t) = {H, 02}, I(T1) = {02}, I(T2) = {H20}

O(t) = {P3, H20}, O(T1) = {}, O(T2) = {P4}

x=[9,1,1,0,0] corresponding to places [H, 02, H20, P3, P4]



Marked Petri Net semantics: behaviour traces
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T1L &
o so=[9,1,1,0,0]
P& S1=0[9,1,0,0,1]
| S2=[9,0,1,0,0]
S3=[7,0,2,3,0]
- S4=1[9,0,0,0,1]
t ‘X S5=[7,0,1,3,1]
- 2 oo S6=[7,0,0,3,2]

A T2

S6

Reachability graph =
compact notation of all possible “sample paths” (behaviour traces) =

{s0 -T1-> s2 -T2-> s4, SO -T2-> S1 -T1-> S4,
SO -T2-> S1 -t-> S5 -T2-> S6, SO -t-> S3 -T2-> S5 -T2-> S6}



Linear Temporal Logic (LTL, Amir Pnueli in 1977): specifying properties over (behaviour) traces

LTL formulas:
gu=true | a | p1Ap2| "¢ | O¢ | L1Ugp2

® a = atomic proposition Operator precedence
e () =“next”: @ is true at next step e Unary bind stronger than binary

e U = “until’: g, is true at some point, e U takes precedence over A, vand —

@4 is true until that time
(behaviour) trace

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

a arbitrary arbitrary arbitrary arbitrary
atomic prop.a ( ) —{ ) =) =) -
S L L L “_
arbitrary a arbitrary arbitrary arbitrary
- N _.-"_ ....'K'_ _Ir"' ™ ‘_I/" Y _
next step Oa () () u ), s v, -
a —1b a —lb al —lb b arbitrary
- .r'---\.l ._."’-‘ ™ .-.Jl/-‘ ™ h]x" Y LJ,.-"' Y _
untilaUb () ) ) W, . -

® Same notation as linear time properties: o = @ (path “satisfies” specification)



“Primary” temporal logic operators

F Eventually 0¢:=trueUd ¢ will become true at some point in the future

G Always O¢ =07 ¢ is always true; “(never (eventually (7¢)))”
- - - a rbit
eventually 0a ()—() ) - ) il -

in the Fullness of time

always [a
Globally

Some common composite operators
e p — 0q p implies eventually q (response)

ep—-qUr pimplies quntilr (precedence)

e [10p always eventually p (progress)
e O[Ip eventually always p (stability)
e Op — Og eventually p implies eventually g

(correlation)

Operator precedence

e Unary binds stronger
than binary

e Bind from right to left:
Oop = (0 (Op))
pUgqUr=pU(qUr)

e U takes precedence over
A, vand —



System description
e Focus on lights in on particular direction
® | ight can be any of three colors: green, yellow, red
e Atomic propositions = light color

red /yellow

green

Ordering specifications
® |iveness: “traffic light is green infinitely often”
[10green
® Chronological ordering: “once red, the light cannot become green immediately”
O (red - =7 O green)

® Vore detailed: “once red, the light always becomes green eventually after being
yellow for some time”

CO(red — (O green A (7 green U yellow)))
O(red — O (red U (yellow A © (yellow U green))))
Progress property
® Every request will eventually lead to a response
[ (request — ¢response)



process 1 process 2

enterCritical_1

- I Critical_2
leavecCritical_1 eaveCritical_

Property: Process 1 and process 1 are never both in their critical sections at the same time (mutual exclusion)

T (e Cobiedca) ==1) A (xonbikzye=1) )
( T Cibied e ==1) v T cnkidz) == 1) )




process 1 process 2

enterCritical_1

- I Critical_2
leavecCritical_1 eaveCritical_

Property: Process 1 and process 1 are never both in their critical sections at the same time (mutual exclusion)

T (e Cbid ) ==1) A (xlobickzye=1) )
D (_‘ (%(U\&L:ul.. )‘=71) vV _'('x,( WL-‘L.L-Z.):: 1) )

forall paths (CTL)

Vo O 7 (elokedoa)==1) A (xcobdzye=1))




process 1

general_1

enterCritical_1

leavecCritical_1

Property: Neither process monopolizes the critical section (fairness)

semap

process 2

leaveCritical_2

4 ((oc(wl‘-:ul.ﬂ ==1) —> Q (x¢ a-..:l-:;...L..t.):::l) )

L] ((-:t.(wil-:'-l_a)“==1) —s Q7 (%(NL:_[_i}g?,l))

] ((-:c(wl—.-c_.l.-ﬂ-:rﬂ — O(-,L(m;l-:‘.l_g_)::ﬂ))



Computational Tree Logic (CTL)

non-deterministic behaviour
leads to branches
in the behaviour trace

forall paths
(universal quantification)

there exists a path
(existential quantification)

t IDI"H"j

[OI"“-]
N
J\

PA TS

A PAH

(_WL,J)
O——>0

W2,10)

A F [00’1;‘)7

E F L-OI-':‘JJ
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TAPAAL.: Tool for Verification of Timed-Arc Petri Nets

TAPAAL is a tool for

+ modelling, simulation and verification of

* Timed-Arc Petri nets

+ developed at Department of Computer Science at AALborg University in
Denmark

+ and available for Linux, Windows and Mac OS X platforms.

Timed-Arc Petri Net (TAPN) is a time extension of the classical Petri net model (a
commonly used graphical model of distributed computations introduced by Carl
Adam Petri in his disseration in 1962). The time extension we consider allows for
explicit modelling of real-time, which is associated with the tokens in the net
(each tokens has its own age) and arcs from places to transitions are labelled by
time intervals that restrict the age of tokens that can be used in order to fire the
respective transition. In TAPAAL tool a furter extension of this model with age
invariants, urgent transitions, transport arcs (which are more expressive than for
example previously considered read-arcs) and with inhibitor arcs is implemented.

9‘\§

The TAPAAL tool offers a graphical editor for drawing TAPN models, simulator for experimenting with the designed nets and a
verification environment that automatically answers logical queries formulated in a subset of CTL logic (essentially EF, EG, AF, AG
formulae without nesting). It also allows the user to check whether a given net is k-bounded for a given number k. The newest version of
TAPAAL is now equipped with three open source verification engines distributed together with TAPAAL (for continuous time semantics,
discrete time semantics and a new efficient engine for the verification of untimed nets supporting both CTL and LTL logics.). It is also
possible to model two-player games, both with and without time features. Optionally, the user can automatically translate TAPAAL

models into UPPAAL and rely on the UPPAAL verification engine.

https://www.tapaal.net/


https://www.tapaal.net/

Signal Temporal Logic (STL)

Always |z| >0.5 = after 1 s, |z| settles under 0.5 for 1.5 s
Q= G(I‘[t] > .0 — F[Uj.ﬁ} ( G[0,1.5] .T[t] < 05))

-

05 A 0.5 0.5
N '\M IMLQ@A

- v
<1¥s 15k <1s 15s <1s 15s

From “On Signal Temporal Logic” lecture by Alexandre Donzé. EECS114@UCB. 2013



Signal Temporal Logic (STL) for run-time monitoring of Hybrid Systems

x—h

Hybrid System

'db

Simulation

G — q =

~

From “On Signal Temporal Logic” lecture by Alexandre Donzé. EECS114@UCB. 2013

Tools:

- breach (Matlab toolbox)
https://github.com/decyphir/breach

- RTAMT

\

z(t) :I:a |

https://github.com/nickovic/rtamt

\

[ STL monitoring |

Property ¢ =
G|q — F[0, 1]
U0, .2](z > 5)]

ok

- ok



automated and Simulation based functional safety Engineering meThodology (aSET)

System Architecture
L]

System Contract

Contract TR57{

generate-STL

" . . . " Driver
}3ngname Logic vehicle dynamics EDL state 'F' Commands
scope Globally . .
pattern ResponsePattern: closingRequest
if receiveDataCAN has-occurred,
then-in-response vehicle_EDL_State o
eventually-occurs within 50ms systemActivation EDLstateTOESP

[l !

Simulation and verification of contract
( DWSJ[t]==1 ) and ( vehicleEDLState[t]==EDL_OPEN )

500 T T
Bl m true
D - - -
500 I | I | | I | —__|false
0 20 40 60 80 100 120 140 160

Indicates whether (and when) contract is satisfied by the trace



DSL for contract specification

Contract FRO7{
longname "Response to driver locking command"
description "The system must close the EDL after
receiving a locking command from the driver."

statements{
Event driver_lock :=
Port driverCommands_closingRequest == True,
Property close EDL :=
EDL_STATE in Set{State EDLphysicalSyst CloseEDL}
}
scope Globally
pattern ResponsePattern:
if driver_lock has-occurred,then-in-response
close EDL eventually-occurs
generate-STL

Matthias Bernaerts, Bentley J. Oakes, Ken Vanherpen, Bjorn Aelvoet, Hans Vangheluwe, and Joachim Denil.
Validating industrial requirements with a contract-based approach.

Proceedings of the ACM/IEEE 22" International Conference on Model Driven Engineering, Languages and Systems.
Companion, pages 18 — 27. IEEE, September 2019.



	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 141
	Slide 142
	Slide 143
	Slide 145
	Slide 146
	Slide 149
	Slide 150
	Slide 151
	Slide 152

