
Requirements Checking
for Object-Oriented Software Design

with different
Unified Modelling Language (UML) notations

Use Case Notation, Sequence Diagrams,
Regular Expressions and State Automata

Bart Meyers

Hans Vangheluwe

1

2

requirements
(i.e., a set of properties)

design

(may in turn serve as requirements ...)

satisfied by →

3OO Design Notations (UML) →

Contents

• Railway Junction Controller (example)

• Class Diagrams

• Use Case Notation

• Sequence Diagrams

• Regular Expressions

• State Automata

4

Sources/Background Material

• Use cases:
http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%20
4%20Use%20Cases.pdf

• Class diagrams: http://www.uml-diagrams.org/class-diagrams-overview.html

• Sequence diagrams: http://www.uml-diagrams.org/sequence-diagrams.html

• Regular expressions: http://www.zytrax.com/tech/web/regex.htm

• Finite state automata:
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/autom
ata-theory/basics.html

• Test out regular expressions online: https://regex101.com/

• Simple UML rendering tool: http://plantuml.com/

5

http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%204%20Use%20Cases.pdf
http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%204%20Use%20Cases.pdf
http://www.uml-diagrams.org/class-diagrams-overview.html
http://www.tracemodeler.com/articles/a_quick_introduction_to_uml_sequence_diagrams/
http://www.zytrax.com/tech/web/regex.htm
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html
https://regex101.com/
http://plantuml.com/

Railway Junction Controller Requirements
The system (behaviour) to be built must satify the following requirements
(properties):

• R1. By default, all traffic lights that prevent the entry to the junction are
set to red for safety.

• R2. The railway segments continuously check for the presence of a train
on that segment.
As soon as a train is detected, a signal is sent to the controller.

• R3. The controller will process these incoming signals, and will put the
traffic light of the requesting segment to green. This only when there
is currently no train on the junction itself, and when the traffic light
on the other entry to the junction is red too.

• R4. As soon as a train has entered the junction, all traffic lights for entry
to the junction are put to red again.

• R5. If it is detected that the junction is clear again, new (or queued)
requests are handled.

• R6. For safety, the signal to the traffic light is sent out every second
(such that traffic lights can detect if there is a problem with the
connection). 6

Example assignment

• You are given an implementation of a railway junction controller, which needs to set the traffic signals
of the segments coming in to the junction.

• It is necessary to check whether or not the specified requirements are satisfied.

• You are, however, only given access to a trace file of the execution. This trace file contains behaviour
information about the junction, such as all incoming signals, outgoing signals, and internal timers that
get triggered, as a function of time.

• Due to this verbosity, and the total runtime of the execution, the file is quite long, and therefore
validating the requirements is not to be done manually, but automatically.

• You will first model the given requirements using Regular Expressions, starting from Use Cases translated
to Sequence Diagrams which you will translate to Finite State Automata recognizing the Regular
Expressions.
You will subsequently encode the FSAs to automatically verify, based on the given behaviour trace,
whether the system implementation complies with the system specification given in the requirements
below (and modelled visually in Sequence Diagram form). This is obviously only a test rather than a
proof of requirements satisfaction.

7

Assignment

The behaviour to be verified (given as use cases) is as follows:

• U1. When a train wants to enter the junction, it will eventually get a green light.

• U2. When a train enters the junction, all traffic lights to the junction become red.

• U3. If a train is on the junction, all traffic lights will remain red until that train
has left the junction.

• U4. If two trains are waiting to enter the junction at the same time, permission
will be granted in order of arrival (i.e., the first train to arrive will get a green
light, and the second one has to wait). Simultaneous arrival?

• U5. The controller will send the traffic light signals out every second.

8

Workflow

9

Class Diagrams

• Structure of the system (Object-Oriented)
instantiation: Object Diagrams

10

Use Cases

• Document functional requirements of the system
• interactions between system and environments to achieve user goals

• Understandable for (non-technical) client
• semi-formal
• complete, consistent and verifiable

• Business viewpoint
• who (actors) does what (interaction) with what purpose (goal)?
• no implementation details: black box

• See Joerg Kienzle and Shane Sendall’s presentation
• http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-53

3%204%20Use%20Cases.pdf
 (slide 8 -> …)

11

http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%204%20Use%20Cases.pdf
http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%204%20Use%20Cases.pdf

Sequence Diagrams

• Behaviour of the system
• Interaction diagram

• Complementary to Class Diagrams (structure vs. behaviour)

• Complementary to Use Cases (“what?” vs. “how?”)

12

Sequence Diagrams

13

Objects and Lifelines

class object
(only use class messages)

types of objects:

14

Messages (1)

• Synchronous:

• Returned value:

• Not instantantaneous:

• Found message:

15

Messages (2)

• Asynchronous:

• Message to self:

• Object creation/destruction:

16

Conditional Interaction

• Message with guard:

• Multiple messages:

• Alternative interactions:

“combined fragment”

17

Repeated Interaction (1)

• Repeated message:

• Elements in a collection:

• Combined fragment:

18

Repeated Interaction (2)

• Example:

19

Regular Expressions

Search pattern for finding occurrences in a string
• [eE] stands for e or E.

• [a-z] stands for one of the characters in the range a to z.

• ^ means "match at the beginning of a line/string".

• $ means "match at the end of the line/string".

• X|Y means "match either X or Y", with X and Y both sub-expressions.

• [^x] means not x, so [^E].*\n matches every line except those that start with the E character

• . matches any single character.

• X? matches 0 or 1 repetitions of X.

• X* matches 0 or more repetitions of X.

• X+ matches 1 or more repetitions of X.

• \ is used to escape meta-characters such as (. If you want to match the character (, you need the pattern \(.

• The (and) meta-characters are used to memorize a match for later use. They can be used around arbitrarily complex patterns. For example ([0-9]+) matches
any non-empty sequence of digits. The matched pattern is memorized and can be referred to later by using \1. Following matched bracketed patterns are
referred to by \2, \3, etc. Note that you will need to encode powerful features such as this one by adding appropriate actions (side-effects) to your
automaton encoding the regular expression. This can easily be done by storing a matched pattern in a variable and later referring to it again.

20

Example: Railway Junction Controller Trace

Write regular expressions (refer to the format of the given output trace) for verifying the
above use cases. We use abbreviations to shorten the messages that you need to
recognize in your RegExp/FSA. Here are the mappings:

E := A train Enters the specified segment (En with n the segment number)

R := A Red signal is sent to the specified segment

G := A Green signal is sent to the specified segment

X := A train leaves the specified segment

Beyond that, each segment has a simple encoding:

1 := left incoming railway segment

2 := right incoming railway segment

3 := outgoing railway segment

21

Example: Regular Expression

If a train wants to enter the junction, it will eventually get a green light.

Regular expression pattern (for segment 1):
^((([^E].*)|(E [23]))\n)*(E 1\n(.*\n)*G 1\n((([^E].*)|(E [23]))\n)*)*$

For segment 2:
^((([^E].*)|(E [13]))\n)*(E 2\n(.*\n)*G 2\n((([^E].*)|(E [13]))\n)*)*$

Anything except for E 1:
(([^E].*)|(E [23]))\n

22

Finite State Automata

• Discrete states + transitions

• Change state in response to external inputs: transition

• Can be used to encode regular expressions

23

Finite State Automata Example

24

 D [0-9]
 E [eE][+-]?({D})+
 Number [({D}+{E}?)
 ({D}*'.'{D}+({E})?)
 ({D}+'.'{D}*({E})?)]

Finite State Automata
Implementation (semantics)

class Scanner:
 """
 A simple Finite State Automaton simulator.
 Used for scanning an input stream.
 """
 def __init__(self, stream):
 self.set_stream(stream)
 self.current_state=None
 self.accepting_states=[]

 def set_stream(self, stream):
 self.stream = stream

 def scan(self):
 ...

 def scan(self):

 self.current_state=self.transition(self.current_state, None)

 if __trace__:
 print "\ndefault transition --> "+self.current_state

 while 1:
 # look ahead at the next character in the input stream
 next_char = self.stream.showNextChar()

 # stop if this is the end of the input stream
 if next_char == None: break

 if __trace__:
 print str(self.stream)
 if self.current_state != None:
 print "transition "+self.current_state+" -| "+next_char,

 # perform transition and its action to the appropriate new state
 next_state = self.transition(self.current_state, next_char)

 if __trace__:
 if next_state == None:
 print
 else:
 print "|-> "+next_state

 # stop if a transition was not possible
 if next_state == None:
 break
 else:
 self.current_state = next_state
 # perform the new state's entry action (if any)
 self.entry(self.current_state, next_char)

 # now, actually consume the next character in the input stream
 next_char = self.stream.getNextChar()

 if __trace__:
 print str(self.stream)+"\n"

 # now check whether to accept consumed characters
 success = self.current_state in self.accepting_states
 if success:
 self.stream.commit()
 else:
 self.stream.rollback()
 return success

25

Finite State Automata:
encoding a specific FSA

class NumberScanner(Scanner):

 def __init__(self, stream):

 # superclass constructor
 Scanner.__init__(self, stream)

 # define accepting states
 self.accepting_states=["S2","S4","S7"]

 def __str__(self):

 return str(self.value)+"E"+str(self.exp)

 def entry(self, state, input):

 pass

def transition(self, state, input):
 """
 Encodes transitions and actions
 """

 if state == None:
 # action
 # initialize variables
 self.value = 0
 self.exp = 0
 # new state
 return "S1"

 elif state == "S1":
 if input == '.':
 # action
 self.scale = 0.1
 # new state
 return "S3"
 elif '0' <= input <= '9':
 # action
 self.value = ord(string.lower(input))-ord('0')
 # new state
 return "S2"
 else:
 return None

 elif state == "S2":
 if input == '.':
 # action
 self.scale = 0.1
 # new state
 return "S4"
 elif '0' <= input <= '9':
 # action
 self.value = self.value*10+ord(string.lower(input))-ord('0')
 # new state
 return "S2"
 elif ... 26

	Slide1
	Slide 2
	Slide 3
	Slide2
	Slide8
	Slide4
	Slide5
	Slide9
	Slide6
	Slide3
	Slide15
	Slide7
	Slide19
	Slide10
	Slide11
	Slide12
	Slide13
	Slide14
	Slide16
	Slide17
	Slide21
	Slide20
	Slide22
	Slide23
	Slide24
	Slide25

