
1© 2016 The MathWorks, Inc.

Modeling complex engineered systems in

industry using MATLAB and Simulink

Pieter J. Mosterman

Chief Research Scientist, Director

Advanced Research & Technology Office

Adjunct Professor

School of Computer Science

2

Machines are connecting

and collaborating

Where can we have

impact, which solutions

are needed, what

challenges these

solutions, and how can we

overcome the challenges?

Port of Rotterdam

A smart emergency

response system

3

System
characterization

A requirements
perspective

The Towers of
Hanoi revisited

Multiformalism

4

The Observe-Orient-Decide-Act (OODA) loop

Colonel John Richard Boyd

5

Orient

Decide

Observe Act

Environment

OODA and the stages of cognition

Perception

Interpretation

Cognition

7

ReasonPerceive Interpret

Ensemble

Individual

Connected

Autonomous

Collaborative

Adaptive Automatic

Distributed

A feature classification

8

System
characterization

A requirements
perspective

The Towers of
Hanoi revisited

Multiformalism

9

specification
requirements &

domain knowledgeprogram

Machine (mh) Environment (eh)

O

(mv)

I (ev)

Requirements engineering

 A requirement is a desired relationship

among phenomena

(e.g., actions/events, states) of the

environment

 Phenomena are categorized as

– eh: controlled (or initiated) by the

environment and hidden from (i.e.,

invisible to, not shared with) the machine

– ev: controlled by the environment but

visible to (i.e., shared with) the machine

– mv: controlled by the machine but visible

to (shared with) the environment

– mh: controlled by the machine and hidden

from (i.e., not shared with) the

environment

Michael Anthony Jackson

10

specification
requirements &

domain knowledgeprogram

Machine (mh)

Requirements engineering

indicative

optative

 A requirement is a desired relationship

among phenomena

(e.g., actions/events, states) of the

environment

 Phenomena are categorized as

– eh: controlled (or initiated) by the

environment and hidden from (i.e.,

invisible to, not shared with) the machine

– ev: controlled by the environment but

visible to (i.e., shared with) the machine

– mv: controlled by the machine but visible

to (shared with) the environment

– mh: controlled by the machine and hidden

from (i.e., not shared with) the

environment

Michael Anthony Jackson

11

A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior

Property satisfying behavior

Closed loop designed behavior

Machine Environment
Out

In

World
Out

In

||

12

EnvironmentMachine

Out

In

A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior

Property satisfying behavior

Closed loop designed behavior

||

World
Out

In

13

Machine Environment

Out

In

A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior

Property satisfying behavior

Closed loop designed behavior

World

||

Out

In

14

Implementing a specification

Functional

 Interface phenomena ev and mv

– May not uniquely determine I/O

mappings

– May construct hidden state from

environment model environment

designations (e.g., observer, filter)

– May require processing with state

(e.g., signal to symbol)

Behavioral

 Configure a machine

– Internal state of a machine

15

State

Environment

 In our mind

 FEM up to 400k degrees of (Real)

freedom

Machine (System)

 In our realization

 Up to ~4G*8 degrees of (binary)

freedom

16

Characterization

Physics

 Dynamic models

 Real values

 Continuous (ODE, DAE)

 State coupling!

– For control design, 400k states

reduce to ~10 states

Computation

 Steady state models (clocked)

 Binary values

 Discrete (LTS, FSM)

 Entirely independent!

– Engineered as such, ~32*109 states

f(dx/dt, x, u, t) = 0 , , 

State is complex!

17

 Physically—

sensitivities
(“within engineering tolerance”)

 System variation on

individual traces

 Different conditions

(e.g., failure modes)

 Computationally—

abstraction

Tackle large state spaces by analyzing sets of states

 𝑠𝑝
𝑥 =

𝜕𝑓

𝜕𝑥
𝑠𝑝

𝑥 +
𝜕𝑓

𝜕𝑝
, 𝑠𝑝

𝑥 0 =
𝜕𝑥0

𝜕𝑝

𝑠𝑝
𝑥 =

𝜕

𝜕𝑝
𝑝,𝑥0

(𝑡)

𝑦 =

𝑡∈ 0,𝑇

min 𝑦 𝑡 =

𝑡∈ 0,𝑇

min 𝑔 𝑥(𝑡 , 𝑢

𝑦 =

𝑡∈ 0,𝑇

m𝑎𝑥 𝑦 𝑡 =

𝑡∈ 0,𝑇

m𝑎𝑥 𝑔 𝑥(𝑡 , 𝑢

𝑠. 𝑡.
𝑥 𝑡 = 𝑥0 +

0

𝑡

𝑓 𝑥, 𝑢, 𝜆, 𝜏 𝑑𝜏

𝜆 ∈ 𝜆, 𝜆 , 𝑥0 ∈ 𝑥0, 𝑥0

What is the meaning of

this pipe? To a domain

expert?

(t)

Can be interpreted by

domain expert

18

Selectively analyze the state space

 Restrictions over state space exist

– Analyze sets of states

– Exclude the set of infeasible states

 Open loop analysis is problematic

– Deep (prohibitively) input traces build

up an offending state

– Incomprehensible input sequences

 Knowing feasible states is key

– Restrict input to achievable traces

– Include feasible environment reaction

 Close the loop

– Analyze combined system and

environment (set amenable) models

 Want to use minimal models

– Model checking is computationally

expensive

– The temporal dimension exacerbates

(1 minute trace @ 100ms sample

time @ 10^9 states @ 2^8 values)

 Based on what you want to

achieve

 Model at the appropriate level of

abstraction!

19

System
characterization

A requirements
perspective

The Towers of
Hanoi revisited

Multiformalism

Towers of Hanoi

slider

nozzle

rails

block R

block B

nozzle motor

slider motor

block G

air pump

gravity

nozzle motor

slider motor

I

I

I

II

gravity

R

R

parameters

brkwy_frc = { 25, 'N' }; % Breakaway friction force

Col_frc = { 20, 'N' }; % Coulomb friction force

visc_coef = { 100, 'N*s/m' }; % Viscous friction coefficient

trans_coef = { 10, 's/m' }; % Transition approximation coefficient

vel_thr = { 1e-4, 'm/s' }; % Linear region velocity threshold

end

parameters (Access=private)

brkwy_frc_th = { 24.995, 'N' }; % Breakaway force at threshold velocity

end

function setup

% Computing breakaway friction force at threshold velocity

brkwy_frc_th = visc_coef * vel_thr + Col_frc + (brkwy_frc - Col_frc) * ...

exp(-trans_coef * vel_thr);

end

equations

if (abs(v) <= vel_thr)

% Linear region

f == brkwy_frc_th * v / vel_thr;

elseif v > 0

f == visc_coef * v + Col_frc + ...

(brkwy_frc - Col_frc) * exp(-trans_coef * v);

else

f == visc_coef * v - Col_frc - ...

(brkwy_frc - Col_frc) * exp(-trans_coef * abs(v));

end

end

I

R,C

R

I

R,C

component hardstop_external_ini < foundation.mechanical.translational.branch

% Translational Hard Stop With External Initial Position

parameters

stiff_up = { 1e6, 'N/m' }; % Contact stiffness at upper bound

stiff_low = { 1e6, 'N/m' }; % Contact stiffness at lower bound

D_up = { 150, 'N*s/m'}; % Contact damping at upper bound

D_low = { 150, 'N*s/m'}; % Contact damping at lower bound

end

inputs

upper_bnd = { 0.1, 'm' }; % U:right

lower_bnd = { -0.1, 'm' }; % L:left

x_initial = { 0.0, 'm' }; % I:left

end

variables

x = { 0, 'm'};

end

function setup

if stiff_up <= 0

pm_error('simscape:GreaterThanZero',‘Stiffness')

end

x = 0.0;

end

equations

if ((x + x_initial) > upper_bnd)

% Slider hits upper bound

f == stiff_up * ((x + x_initial) - upper_bnd) + D_up * v;

elseif ((x + x_initial) < lower_bnd)

% Slider hits lower bound

f == stiff_low * ((x + x_initial) - lower_bnd) + D_low * v;

else

% Slider is between hardstops

f == {0 'N'};

end

x.der == v;

end

end

R,C

component(Hidden=true) branch

% Translational Branch

% Defines a translational branch with R and C external nodes.

% Also defines associated through and across variables.

% Copyright 2005-2008 The MathWorks, Inc.

nodes

R = foundation.mechanical.translational.translational; % R:left

C = foundation.mechanical.translational.translational; % C:right

end

variables

f = { 0, 'N' };

v = { 0, 'm/s' };

end

function setup

through(f, R.f, C.f);

across(v, R.v, C.v);

end

end

air pump

R,C

R,C

R,C

R,C

gravity

R,C

R

R

I

nozzle motor

slider motor

air pump

gravity

34

physics

nozzle motor

slider motor

air pump

scene view

slider position

35

information

network

physics

nozzle motor

slider motor

air pump

scene view

slider position

stereo cams

block cam

computing

node

NCAP

NCAP

NCAP

base

computing

node

slider

computing

node

36

left

camera

right

camera

slider

motor

nozzle

motor

slider ECU

pump

actuator

pressure

slider force

wireless network

nozzle_mode,

left_video, right_video

found, picked,

placed, nozzle_force

found, picked, placed

block_status, position

nozzle_mode,

slider_force, pressure

position

sensor

supervisory

control

slider

control

detection

logic

nozzle

control

stereo

analysis

pump

control

NCAPNCAPNCAP

position

block_service

left_video right_videonozzle_force

block

camera

block ECU

service

requests

scene

An architecture

base ECU

37

Stereoscopic vision on a synthesized video stream

38

rightleft

left

right

left

right

Stereopsis

dx dx

cameras

field of view

39

rightleft

Stereopsis

cameras

field of view

a

b
c

x
(a-b)/c = a/x

x = ac/(a-b)

http://www.alexandria.nu/ai/blog/entry.asp?E=32

40

Stereoscopic analysis on a synthesized video stream

 Embarrassingly parallel

XOR

left video frame right video frame

41

Stereoscopy implementations

42

Stereoscopy implementations function row = fcn(image_left, image_right)

%#codegen

persistent hmean;

if isempty(hmean)

hmean = vision.Mean();

end

% number of successive image comparisons

nimages = 100;

% initialize the minimum mean and the corresponding row at which this mean

% is found for the number of successive image comparisons

min = 1e5;

row = 0;

% compute left image submatrix to successively compare

uint8_video_left = uint8(image_left);

left = uint8_video_left(75:224, 1:120, :);

% compute uint8 version of right image

uint8_video_right = uint8(image_right);

parfor k=1:nimages

% compute successive right image submatrices for comparison

right = uint8_video_right(125+k:125+149+k, 1:120, :);

% compare left and right image submatrices

cmp = bitxor(left,right);

% compute the mean over all pixels of the comparison results

pixel_mean = step(hmean,double(cmp));

% in case of the final row only accept a substantially less

% (at least 2) value of the mean

if (pixel_mean < min && k < 100) || (pixel_mean < min - 2)

min = pixel_mean;

row = k;

end

end

43

Feedforward (fast) control

44

Nozzle control profile

Pick/place for a stack of two blocks

Pick/place for a stack of one block

nozzle down nozzle up

A physical nozzle/slider

hardstop limits the up

motion and provides a

guaranteed reference

starting point for the next

operation, thus enabling

feedforward control

Decelerate to gently

position the nozzle

45

Nozzle control

 Feedforward (very fast)

control

 Two phases (down/up)

– Staged force profiles

– Predetermined profiles for set

of possible lowpoints

 Top of a stack of two blocks

 Top of a stack of one block

– Lookup table for each lowpoint

46

Nozzle control

Provide as a service

– Profile must be defined

in relative time

– Reset operation state

after completion

 Allows initialization of

relative variables

– Hold off pick or place

operation till the service

is available

47

Feedback mode-switched control of electric drive

48

R

49

Slider control

 Exert a motor force to move the slider to a give position

 Compute a Gaussian (lqg) regulator (output feedback)

– r = desired slider position

– u = motor force

control plant

r y
vw

u

 


































 

dtxQx
u

x
QXUux

T
EuJ

T

iii
Tu 0

,
1

lim)(min

 dtyrx
T

i  
0

50

Slider control

 Plant model

 Requires a linear plant model

– The slider/rail friction ruins it …

plant
y

vw

u
vDuCxy

wBuAx
dt

dx





51

Plant model

 Gaussian regulator
parameters

brkwy_frc = { 25, 'N' }; % Breakaway friction force

Col_frc = { 20, 'N' }; % Coulomb friction force

visc_coef = { 100, 'N*s/m' }; % Viscous friction coefficient

trans_coef = { 10, 's/m' }; % Transition approximation coefficient

vel_thr = { 1e-4, 'm/s' }; % Linear region velocity threshold

end

parameters (Access=private)

brkwy_frc_th = { 24.995, 'N' }; % Breakaway force at threshold velocity

end

function setup

% Computing breakaway friction force at threshold velocity

brkwy_frc_th = visc_coef * vel_thr + Col_frc + (brkwy_frc - Col_frc) * ...

exp(-trans_coef * vel_thr);

end

equations

if (abs(v) <= vel_thr)

% Linear region

f == brkwy_frc_th * v / vel_thr;

elseif v > 0

f == visc_coef * v + Col_frc + ...

(brkwy_frc - Col_frc) * exp(-trans_coef * v);

else

f == visc_coef * v - Col_frc - ...

(brkwy_frc - Col_frc) * exp(-trans_coef * abs(v));

end

end

52

t = 0 seconds

Linearization

 Linearization harness with I/O

 Breakaway at about 3 seconds

 Gaussian regulator for t = 5 seconds

a =

x1 x2

x1 0 1

x2 0 -2.5e+05

b =

u1

x1 0

x2 1

c =

x1 x2

y1 1 0

d =

u1

y1 0

t = 5 seconds
a =

x1 x2

x1 0 1

x2 0 -9.609

b =

u1

x1 0

x2 1

c =

x1 x2

y1 1 0

d =

u1

y1 0

Pss = ss(a, b, c, d);

set(Pss,'inputn', {'force'});

set(Pss,'staten', {'pos', 'vel'});

set(Pss, 'outputn', {'ypos'});

G = lqg(Pss,eye(3),1*eye(3),1e3*eye(1));

Gd = c2d(G,0.005,'tustin');

53

Control performance

 Works well when the slider is in motion

 At low velocity the linearized model is off

– Continuous time control works well

– Discrete time (sample time = 0.005) … not so much

Continuous-time control Discrete-time control

54

Mode-switching control

 Coarse setpoint control using a Gaussian controller

 Fine tune control using ‘bang/bang control’

55

Supervisory and sequence control of operation

56

Hierarchical state machine with concurrency

57

Hierarchical state machine with concurrency

58

Distributed control

59

Block plans as state transition diagrams (nonoptimized)

60

Putting it together

61

The distributed Towers of Hanoi

62

The distributed Towers of Hanoi

63

Open in a horizontal sense

64

Open in a horizontal sense

65

Open in vertical sense

66

Open in vertical sense

im
a
g
e

p
ro

c
e
s
s
in

g

im
a
g
e

p
ro

c
e
s
s
in

g

im
a
g
e

p
ro

c
e
s
s
in

g

im
a
g
e

p
ro

c
e
s
s
in

g

67

left

camera

right

camera

slider

motor

nozzle

motor

slider ECU

pump

actuator

pressure

slider force

wireless network

nozzle_mode, position,

left_video, right_video

found

picked, placed,

nozzle_force

found, picked,

placed, block_service,

position

nozzle_mode,

slider_force,

pressure

position

sensor

supervisory

control

slider

control

detection

logic

nozzle

control

stereo

analysis

pump

control

NCAPNCAPNCAP

position

block_service

left_video right_videonozzle_force

block

camera

block ECU

service

requests

scene

A multirate distributed architecture

base ECU

video
z-1 z-1

z-1

z-1

68

left

camera

right

camera

slider

motor

nozzle

motor

slider ECU

pump

actuator

pressure

slider force

wireless network

nozzle_mode, position,

left_video, right_video

found

picked, placed,

nozzle_force

found, picked,

placed, block_service,

position

nozzle_mode,

slider_force,

pressure

position

sensor

supervisory

control

slider

control

detection

logic

nozzle

control

stereo

analysis

pump

control

NCAPNCAPNCAP

position

block_service

left_video right_videonozzle_force

block

camera

block ECU

service

requests

scene

A multirate distributed architecture

base ECU

video
z-1 z-1

z-1

z-1

69

Emerging behavior

70

System
characterization

A requirements
perspective

The Towers of
Hanoi revisited

Multiformalism

71

A broad range of modeling paradigms

 Signal processing

 Control

– Supervisory and sequence control

– Feedforward and feedback control

– Switched control

 Network, communication

 Physics, plant

72

Modeling the signal processing

• Algorithmic

• Assignments
• Destructive state access

• Untimed

• Data centric

73

Modeling the supervisory and sequence control

• Discrete state based

• Discrete events cause

transitions between states

• Conditions to guard the

transition

• Untimed

• Control centric

74

Modeling the feedback control

• Sampled discrete time

• Fixed sample time

• Periodic

• Data centric

75

Modeling network traffic

• Entity flow through a graph

• Attributes
• Source

• Destination

• service time

• Priority

• …

• Discrete events

• Preemption

• Data centric

• Aperiodic

• Often stochastic

76

Modeling the plant physics

• Domain-specific modeling—

Simscape
• Electrical

• Pneumatic

• Thermal

• …

• Differential equation based

• Noncausal, energy-based,

modeling

77

ordered

With a broad range of semantic domains

78

ordered

With a broad range of semantic domains

79

ordered

synchronous

With a broad range of semantic domains

80

ordered

aperiodic

synchronous

With a broad range of semantic domains

81

periodic

ordered

aperiodic

synchronous

With a broad range of semantic domains

82

periodic

ordered

continuous

aperiodic

synchronous

With a broad range of semantic domains

83

The semantic domain of a dynamic system

 Points, []

– On N

– On R x N

 Intervals, [ ( , ])

– On R

 Hybrid point/interval

– On R

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink, Simscape

84

The semantic domain of a dynamic system

 Points, []

– On N

– On R x N

 Intervals, [ ( , ])

– On R

 Hybrid point/interval

– On R

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink

85

The semantic domain of a dynamic system

 Points, []

– On N

– On R x N

 Intervals, [ ( , ])

– On R

 Hybrid point/interval

– On R

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink

86

The semantic domain of a dynamic system

 Points, []

– On N

– On R x N

 Intervals, [ ( , ])

– On R

 Hybrid point/interval

– On R

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink

f: N → R

87

The semantic domain of a dynamic system

 Points, []

– On N

– On R x N

 Intervals, [ ( , ])

– On R

 Hybrid point/interval

– On R

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink

f: N → R

88

The semantic domain of a dynamic system

 Points, []

– On N

– On R x N

 Intervals, [ ( , ])

– On R

 Hybrid point/interval

– On R

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink

89

A formalism classification

Expression

systems

Finite state

machines

Discrete time

systems

Discrete

event

systems

Explicit

differential

equation

systems

Implicit

differential

equation

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically)

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R

Imperative

Assignment (destructive)

Single control path

Points on N

MATLAB

90

A formalism classification

Imperative

Assignment

Multiple control path

Points on R x N

SimEvents

Expression

systems

Finite state

machines

Discrete time

systems

Discrete

event

systems

Explicit

differential

equation

systems

Implicit

differential

equation

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically)

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R

91

A formalism classification

Imperative

Assignment

Single control path

Points on R x N

Stateflow

Expression

systems

Finite state

machines

Discrete time

systems

Discrete

event

systems

Explicit

differential

equation

systems

Implicit

differential

equation

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically)

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R

92

A formalism classification

Declarative

Equations (causal)

No control path

Points, intervals on R x N

Simulink

Expression

systems

Finite state

machines

Discrete time

systems

Discrete

event

systems

Explicit

differential

equation

systems

Implicit

differential

equation

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically)

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R

93

A formalism classification

Declarative

Noncausal equations

No control path

Intervals on R

Simscape

Expression

systems

Finite state

machines

Discrete time

systems

Discrete

event

systems

Explicit

differential

equation

systems

Implicit

differential

equation

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically)

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R

94

A general operational (computational) semantic domain

 Points, []

– On R x N

95

H. Vangheluwe and G. C. Vansteenkiste.

“ A Multi-Paradigm Modeling and Simulation Methodology: Formalisms and languages,”.

European Simulation Symposium (ESS), Genoa, Italy. pp. 168--172. SCS, October 1996.

96

A general operational (computational) semantic domain

 Points, []

– On R x N

 Without losing the analysis ability and efficiency

– Integer precision

– Clock calculus

– Scheduling

 Static when possible

 Dynamic when necessary

97

Classes of execution behavior

 Controller, sampled time (ST)

– Discrete time

– Frequent periodic time-events

– Events are known before execution

 Network/OS, event driven (ED)

– Discrete time

– Frequent aperiodic time-events

– Events occur during execution

 Plant, time integrated (TI)

– Continuous time

– Sporadic aperiodic state-events

(zero crossings)

– Events occur during execution

TIEDaperiodic

-STperiodic

unknownpredict

Event classification

98

Controller—dedicated time-driven solver

 Discrete time

– Greatest common divisor

– Hyperperiod (more restrictive ‘harmonic’ for multitasking)

– Create a static (integer) schedule

 Map integer schedule onto logical time

– Base rate has a logical time duration

 Earliest future event time

– Time up to which to integrate

hyperperiod

base rate

0 1 2 3 4 5 6 7 8 9 10 11 12

99

Network—dedicated event-driven solver

 Dynamically generate events

 Keep list of events

– Ordered based on time of occurrence

– A (max, plus) algebra

 An event calendar

– Data structure for efficient

 Event insertion

 Event deletion

– Often times a hybrid

 For example, an array + doubly linked list

 Set time to first event time

– Process this event

receive_arrived_ack650 [ms]

receive_trans_ack370 [ms]

resend_service_req220 [ms]

send_service_req20 [ms]

0 1 2
lead tail lead tail lead tail

0.1

next

prev

data

0.7

next

prev

data

3.4

next

prev

data

1.1

next

prev

data

10.5

next

prev

data

2.2

next

prev

data

2.9

next

prev

data

5.5

next

prev

data

8.4

next

prev

data

100

Physics—dedicated time-driven solver

• Numerical solver integrates time (step h)

kt

kx

1kt kt

kx

1kt

1kx

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

 
 



 kkk ttxftx),()(

 11),()()(  kkkk ttxhtxftx 

101

System
characterization

A requirements
perspective

The Towers of
Hanoi revisited

Multiformalism

102

Do not fall in love with your model

-- Jacques LeFèvre

103

®

