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Machines are connecting

and collaborating 

Where can we have 

impact, which solutions

are needed, what 

challenges these 

solutions, and how can we 

overcome the challenges?

Port of Rotterdam

A smart emergency 

response system
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System 
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The Towers of 
Hanoi revisited

Multiformalism
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The Observe-Orient-Decide-Act (OODA) loop

Colonel John Richard Boyd
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Orient

Decide

Observe Act

Environment

OODA and the stages of cognition

Perception

Interpretation

Cognition
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ReasonPerceive Interpret

Ensemble

Individual

Connected

Autonomous

Collaborative

Adaptive Automatic

Distributed

A feature classification
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specification
requirements &

domain knowledgeprogram

Machine (mh) Environment (eh)

O 

(mv)

I (ev)

Requirements engineering

 A requirement is a desired relationship 

among phenomena

(e.g., actions/events, states) of the 

environment

 Phenomena are categorized as

– eh: controlled (or initiated) by the 

environment and hidden from (i.e., 

invisible to, not shared with) the machine

– ev: controlled by the environment but 

visible to (i.e., shared with) the machine

– mv: controlled by the machine but visible 

to (shared with) the environment

– mh: controlled by the machine and hidden 

from (i.e., not shared with) the 

environment

Michael Anthony Jackson
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specification
requirements &

domain knowledgeprogram

Machine (mh)

Requirements engineering

indicative

optative

 A requirement is a desired relationship 

among phenomena

(e.g., actions/events, states) of the 

environment

 Phenomena are categorized as

– eh: controlled (or initiated) by the 

environment and hidden from (i.e., 

invisible to, not shared with) the machine

– ev: controlled by the environment but 

visible to (i.e., shared with) the machine

– mv: controlled by the machine but visible 

to (shared with) the environment

– mh: controlled by the machine and hidden 

from (i.e., not shared with) the 

environment

Michael Anthony Jackson
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A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior

Property satisfying behavior

Closed loop designed behavior

Machine Environment
Out

In

World
Out

In

||
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A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior
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Machine Environment

Out

In

A behavioral view

Program

Open loop possible behavior

Closed loop possible behavior

Property satisfying behavior

Closed loop designed behavior

World

||

Out

In
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Implementing a specification

Functional

 Interface phenomena ev and mv

– May not uniquely determine I/O 

mappings

– May construct hidden state from 

environment model environment 

designations (e.g., observer, filter)

– May require processing with state 

(e.g., signal to symbol)

Behavioral

 Configure a machine

– Internal state of a machine
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State

Environment

 In our mind

 FEM up to 400k degrees of (Real) 

freedom

Machine (System)

 In our realization

 Up to ~4G*8 degrees of (binary) 

freedom
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Characterization

Physics

 Dynamic models

 Real values

 Continuous (ODE, DAE)

 State coupling!

– For control design, 400k states 

reduce to ~10 states

Computation

 Steady state models (clocked)

 Binary values

 Discrete (LTS, FSM)

 Entirely independent!

– Engineered as such, ~32*109 states

f(dx/dt, x, u, t) = 0 , , 

State is complex!
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 Physically—

sensitivities
(“within engineering tolerance”)

 System variation on 

individual traces

 Different conditions 

(e.g., failure modes)

 Computationally—

abstraction

Tackle large state spaces by analyzing sets of states

 𝑠𝑝
𝑥 =

𝜕𝑓

𝜕𝑥
𝑠𝑝

𝑥 +
𝜕𝑓

𝜕𝑝
, 𝑠𝑝

𝑥 0 =
𝜕𝑥0

𝜕𝑝

𝑠𝑝
𝑥 =  

𝜕

𝜕𝑝
𝑝,𝑥0

(𝑡)

𝑦 =  
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𝑠. 𝑡.
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0

𝑡
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𝜆 ∈ 𝜆, 𝜆 , 𝑥0 ∈ 𝑥0, 𝑥0

What is the meaning of 

this pipe? To a domain 

expert?

(t)

Can be interpreted by 

domain expert
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Selectively analyze the state space

 Restrictions over state space exist

– Analyze sets of states

– Exclude the set of infeasible states

 Open loop analysis is problematic

– Deep (prohibitively) input traces build 

up an offending state

– Incomprehensible input sequences

 Knowing feasible states is key

– Restrict input to achievable traces 

– Include feasible environment reaction

 Close the loop

– Analyze combined system and 

environment (set amenable) models

 Want to use minimal models

– Model checking is computationally 

expensive 

– The temporal dimension exacerbates 

(1 minute trace @ 100ms sample 

time @ 10^9 states @ 2^8 values)

 Based on what you want to 

achieve

 Model at the appropriate level of 

abstraction!
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Towers of Hanoi







slider

nozzle

rails

block R

block B

nozzle motor

slider motor

block G

air pump

gravity



nozzle motor

slider motor

I

I

I

II

gravity



R



R

parameters

brkwy_frc = { 25, 'N' };          % Breakaway friction force

Col_frc = { 20, 'N' };            % Coulomb friction force

visc_coef = { 100, 'N*s/m' };     % Viscous friction coefficient

trans_coef = { 10, 's/m' };       % Transition approximation coefficient

vel_thr = { 1e-4, 'm/s' };        % Linear region velocity threshold

end

parameters (Access=private)

brkwy_frc_th = { 24.995, 'N' };   % Breakaway force at threshold velocity

end

function setup

% Computing breakaway friction force at threshold velocity

brkwy_frc_th = visc_coef * vel_thr + Col_frc + (brkwy_frc - Col_frc) * ...

exp(-trans_coef * vel_thr);  

end

equations

if (abs(v) <= vel_thr)

% Linear region

f == brkwy_frc_th * v / vel_thr;

elseif v > 0

f == visc_coef * v + Col_frc + ...

(brkwy_frc - Col_frc) * exp(-trans_coef * v);

else

f == visc_coef * v - Col_frc - ...

(brkwy_frc - Col_frc) * exp(-trans_coef * abs(v));

end

end

I



R,C

R

I



R,C

component hardstop_external_ini < foundation.mechanical.translational.branch

% Translational Hard Stop With External Initial Position

parameters

stiff_up = { 1e6, 'N/m' };      % Contact stiffness at upper bound

stiff_low = { 1e6, 'N/m' };     % Contact stiffness at lower bound

D_up = { 150, 'N*s/m'};         % Contact damping at upper bound

D_low = { 150, 'N*s/m'};        % Contact damping at lower bound

end

inputs

upper_bnd = { 0.1, 'm' };       % U:right

lower_bnd = { -0.1, 'm' };      % L:left

x_initial = { 0.0, 'm' };       % I:left

end

variables

x = { 0, 'm'};

end

function setup

if stiff_up <= 0

pm_error('simscape:GreaterThanZero',‘Stiffness')

end

x = 0.0;

end

equations

if ((x + x_initial) > upper_bnd)

% Slider hits upper bound

f == stiff_up * ((x + x_initial) - upper_bnd) + D_up * v;

elseif ((x + x_initial) < lower_bnd)

% Slider hits lower bound

f == stiff_low * ((x + x_initial) - lower_bnd) + D_low * v;

else

% Slider is between hardstops

f == {0 'N'}; 

end

x.der == v;

end

end



R,C

component(Hidden=true) branch

% Translational Branch

% Defines a translational branch with R and C external nodes.

% Also defines associated through and across variables.

% Copyright 2005-2008 The MathWorks, Inc.

nodes

R = foundation.mechanical.translational.translational; % R:left

C = foundation.mechanical.translational.translational; % C:right

end

variables

f = { 0, 'N' };

v = { 0, 'm/s' };

end

function setup

through( f, R.f, C.f );

across( v, R.v, C.v );

end

end



air pump

R,C

R,C

R,C



R,C

gravity

R,C



R

R

I



nozzle motor

slider motor

air pump

gravity
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physics

nozzle motor

slider motor

air pump

scene view

slider position
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information

network

physics

nozzle motor

slider motor

air pump

scene view

slider position

stereo cams

block cam

computing

node

NCAP

NCAP

NCAP

base

computing 

node

slider

computing 

node
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left 

camera

right 

camera

slider

motor

nozzle

motor

slider ECU

pump

actuator

pressure

slider force

wireless network

nozzle_mode, 

left_video, right_video

found, picked, 

placed, nozzle_force

found, picked, placed 

block_status, position

nozzle_mode, 

slider_force, pressure

position 

sensor

supervisory

control

slider

control

detection

logic

nozzle

control

stereo

analysis

pump

control

NCAPNCAPNCAP

position

block_service

left_video right_videonozzle_force

block

camera

block ECU

service

requests

scene

An architecture

base ECU
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Stereoscopic vision on a synthesized video stream
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rightleft

left

right

left

right

Stereopsis

dx dx

cameras

field of view
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rightleft

Stereopsis

cameras

field of view

a

b
c

x
(a-b)/c = a/x

x = ac/(a-b)

http://www.alexandria.nu/ai/blog/entry.asp?E=32
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Stereoscopic analysis on a synthesized video stream

 Embarrassingly parallel

XOR

left video frame right video frame
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Stereoscopy implementations
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Stereoscopy implementations function row = fcn(image_left, image_right)

%#codegen

persistent hmean;

if isempty(hmean)

hmean = vision.Mean();

end

% number of successive image comparisons

nimages = 100;

% initialize the minimum mean and the corresponding row at which this mean

% is found for the number of successive image comparisons

min = 1e5;

row = 0;

% compute left image submatrix to successively compare

uint8_video_left = uint8(image_left);

left = uint8_video_left(75:224, 1:120, :);

% compute uint8 version of right image

uint8_video_right = uint8(image_right);

parfor k=1:nimages

% compute successive right image submatrices for comparison

right = uint8_video_right(125+k:125+149+k, 1:120, :);

% compare left and right image submatrices

cmp = bitxor(left,right);

% compute the mean over all pixels of the comparison results

pixel_mean = step(hmean,double(cmp));

% in case of the final row only accept a substantially less

% (at least 2) value of the mean

if (pixel_mean < min && k < 100) || (pixel_mean < min - 2)

min = pixel_mean;

row = k;

end

end
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Feedforward (fast) control
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Nozzle control profile

Pick/place for a stack of two blocks

Pick/place for a stack of one block

nozzle down nozzle up

A physical nozzle/slider 

hardstop limits the up 

motion and provides a 

guaranteed reference 

starting point for the next 

operation, thus enabling 

feedforward control

Decelerate to gently 

position the nozzle
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Nozzle control

 Feedforward (very fast) 

control

 Two phases (down/up)

– Staged force profiles

– Predetermined profiles for set 

of possible lowpoints

 Top of a stack of two blocks

 Top of a stack of one block

– Lookup table for each lowpoint
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Nozzle control

Provide as a service

– Profile must be defined 

in relative time

– Reset operation state 

after completion

 Allows initialization of 

relative variables

– Hold off pick or place 

operation till the service 

is available
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Feedback mode-switched control of electric drive
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R
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Slider control

 Exert a motor force to move the slider to a give position 

 Compute a Gaussian (lqg) regulator (output feedback)

– r = desired slider position

– u = motor force

control plant

r y
vw

u

 
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Slider control

 Plant model

 Requires a linear plant model

– The slider/rail friction ruins it …

plant
y

vw

u
vDuCxy

wBuAx
dt

dx




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Plant model

 Gaussian regulator
parameters

brkwy_frc = { 25, 'N' };          % Breakaway friction force

Col_frc = { 20, 'N' };            % Coulomb friction force

visc_coef = { 100, 'N*s/m' };     % Viscous friction coefficient

trans_coef = { 10, 's/m' };       % Transition approximation coefficient

vel_thr = { 1e-4, 'm/s' };        % Linear region velocity threshold

end

parameters (Access=private)

brkwy_frc_th = { 24.995, 'N' };   % Breakaway force at threshold velocity

end

function setup

% Computing breakaway friction force at threshold velocity

brkwy_frc_th = visc_coef * vel_thr + Col_frc + (brkwy_frc - Col_frc) * ...

exp(-trans_coef * vel_thr);  

end

equations

if (abs(v) <= vel_thr)

% Linear region

f == brkwy_frc_th * v / vel_thr;

elseif v > 0

f == visc_coef * v + Col_frc + ...

(brkwy_frc - Col_frc) * exp(-trans_coef * v);

else

f == visc_coef * v - Col_frc - ...

(brkwy_frc - Col_frc) * exp(-trans_coef * abs(v));

end

end
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t = 0 seconds

Linearization

 Linearization harness with I/O

 Breakaway at about 3 seconds

 Gaussian regulator for t = 5 seconds

a = 

x1        x2

x1         0         1

x2         0  -2.5e+05

b = 

u1

x1   0

x2   1

c = 

x1  x2

y1   1   0

d = 

u1

y1   0

t = 5 seconds
a = 

x1      x2

x1       0       1

x2       0  -9.609

b = 

u1

x1   0

x2   1

c = 

x1  x2

y1   1   0

d = 

u1

y1   0

Pss = ss(a, b, c, d);

set(Pss,'inputn', {'force'});

set(Pss,'staten', {'pos', 'vel'});

set(Pss, 'outputn', {'ypos'});

G = lqg(Pss,eye(3),1*eye(3),1e3*eye(1));

Gd = c2d(G,0.005,'tustin');
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Control performance

 Works well when the slider is in motion

 At low velocity the linearized model is off

– Continuous time control works well

– Discrete time (sample time = 0.005) … not so much

Continuous-time control Discrete-time control
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Mode-switching control

 Coarse setpoint control using a Gaussian controller

 Fine tune control using ‘bang/bang control’
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Supervisory and sequence control of operation
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Hierarchical state machine with concurrency
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Hierarchical state machine with concurrency
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Distributed control
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Block plans as state transition diagrams (nonoptimized)
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Putting it together
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The distributed Towers of Hanoi
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The distributed Towers of Hanoi



63

Open in a horizontal sense
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Open in a horizontal sense
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Open in vertical sense
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Open in vertical sense
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left 

camera
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A multirate distributed architecture
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Emerging behavior
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A broad range of modeling paradigms

 Signal processing

 Control

– Supervisory and sequence control

– Feedforward and feedback control

– Switched control

 Network, communication

 Physics, plant
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Modeling the signal processing

• Algorithmic

• Assignments
• Destructive state access

• Untimed

• Data centric
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Modeling the supervisory and sequence control

• Discrete state based

• Discrete events cause 

transitions between states

• Conditions to guard the 

transition

• Untimed

• Control centric
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Modeling the feedback control

• Sampled discrete time

• Fixed sample time

• Periodic

• Data centric
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Modeling network traffic

• Entity flow through a graph 

• Attributes
• Source

• Destination

• service time 

• Priority

• …

• Discrete events

• Preemption

• Data centric

• Aperiodic

• Often stochastic
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Modeling the plant physics

• Domain-specific modeling—

Simscape
• Electrical

• Pneumatic

• Thermal

• …

• Differential equation based

• Noncausal, energy-based, 

modeling
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ordered

With a broad range of semantic domains
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ordered

With a broad range of semantic domains
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ordered

synchronous

With a broad range of semantic domains
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ordered

aperiodic

synchronous

With a broad range of semantic domains
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periodic

ordered

aperiodic

synchronous

With a broad range of semantic domains
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periodic

ordered

continuous

aperiodic

synchronous

With a broad range of semantic domains
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The semantic domain of a dynamic system

 Points, [ ]

– On N 

– On R x N 

 Intervals, [  ( ,  ])

– On R

 Hybrid point/interval

– On R 

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink, Simscape
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The semantic domain of a dynamic system

 Points, [ ]
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– On R x N 
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 Hybrid point/interval

– On R 

– On R x N

MATLAB, Stateflow
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Simulink
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The semantic domain of a dynamic system

 Points, [ ]

– On N 

– On R x N 
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– On R

 Hybrid point/interval
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The semantic domain of a dynamic system

 Points, [ ]

– On N 

– On R x N 

 Intervals, [  ( ,  ])

– On R

 Hybrid point/interval

– On R 

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink

f: N → R
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The semantic domain of a dynamic system
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The semantic domain of a dynamic system

 Points, [ ]

– On N 

– On R x N 

 Intervals, [  ( ,  ])

– On R

 Hybrid point/interval

– On R 

– On R x N

MATLAB, Stateflow

Discrete time Simulink

SimEvents

Simulink

Simulink, Simscape

Simulink
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A formalism classification

Expression 

systems

Finite state 

machines

Discrete time

systems

Discrete 

event

systems

Explicit 

differential 

equation 

systems

Implicit 

differential 

equation 

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically) 

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R

Imperative

Assignment (destructive)

Single control path

Points on N

MATLAB
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A formalism classification

Imperative

Assignment

Multiple control path

Points on R x N

SimEvents

Expression 

systems

Finite state 

machines

Discrete time

systems

Discrete 

event

systems

Explicit 

differential 

equation 

systems

Implicit 

differential 

equation 

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically) 

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R
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A formalism classification

Imperative

Assignment

Single control path

Points on R x N

Stateflow

Expression 

systems

Finite state 

machines

Discrete time

systems

Discrete 

event

systems

Explicit 

differential 

equation 

systems

Implicit 

differential 

equation 

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically) 

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R
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A formalism classification

Declarative

Equations (causal)

No control path

Points, intervals on R x N

Simulink

Expression 

systems

Finite state 

machines

Discrete time

systems

Discrete 

event

systems

Explicit 

differential 

equation 

systems

Implicit 

differential 

equation 

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically) 

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R
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A formalism classification

Declarative

Noncausal equations

No control path

Intervals on R

Simscape

Expression 

systems

Finite state 

machines

Discrete time

systems

Discrete 

event

systems

Explicit 

differential 

equation 

systems

Implicit 

differential 

equation 

system

Paradigm Imperative

Declarative

Imperative Declarative

(typically) 

Imperative Declarative

Causal

Declarative

Noncausal

Domain Point  N

(untimed)

Point  N

(untimed)

Point  N

(timed)

Point  R

(timed)

Interval  R

(timed)

Interval  R

(timed)

Codomain Point  N, R Point  N, R Point  R Point  R Interval  R Interval  R
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A general operational (computational) semantic domain

 Points, [ ]

– On R x N
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H. Vangheluwe and G. C. Vansteenkiste.

“ A Multi-Paradigm Modeling and Simulation Methodology: Formalisms and languages,”.

European Simulation Symposium (ESS), Genoa, Italy. pp. 168--172. SCS, October 1996.
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A general operational (computational) semantic domain

 Points, [ ]

– On R x N

 Without losing the analysis ability and efficiency

– Integer precision

– Clock calculus

– Scheduling

 Static when possible

 Dynamic when necessary
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Classes of execution behavior

 Controller, sampled time (ST)

– Discrete time

– Frequent periodic time-events

– Events are known before execution

 Network/OS, event driven (ED)

– Discrete time

– Frequent aperiodic time-events

– Events occur during execution

 Plant, time integrated (TI)

– Continuous time

– Sporadic aperiodic state-events 

(zero crossings)

– Events occur during execution

TIEDaperiodic

-STperiodic

unknownpredict

Event classification



98

Controller—dedicated time-driven solver

 Discrete time

– Greatest common divisor

– Hyperperiod (more restrictive ‘harmonic’ for multitasking)

– Create a static (integer) schedule

 Map integer schedule onto logical time 

– Base rate has a logical time duration

 Earliest future event time

– Time up to which to integrate

hyperperiod

base rate

0 1 2 3 4 5 6 7 8 9 10 11 12
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Network—dedicated event-driven solver

 Dynamically generate events

 Keep list of events

– Ordered based on time of occurrence

– A (max, plus) algebra

 An event calendar

– Data structure for efficient

 Event insertion

 Event deletion

– Often times a hybrid

 For example, an array + doubly linked list

 Set time to first event time

– Process this event

receive_arrived_ack650 [ms]

receive_trans_ack370 [ms]

resend_service_req220 [ms]

send_service_req20 [ms]

0 1 2
lead tail lead tail lead tail

0.1

next

prev

data

0.7

next

prev

data

3.4

next

prev

data

1.1

next

prev

data

10.5

next

prev

data

2.2

next

prev

data

2.9

next

prev

data

5.5

next

prev

data

8.4

next

prev

data
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Physics—dedicated time-driven solver

• Numerical solver integrates time (step h)

kt

kx

1kt kt

kx

1kt

1kx

k
kk

kkt h
txtx

txtx
2

)()(
)()(ˆ 1

1

 
 



 kkk ttxftx ),()( 

 11 ),()()(   kkkk ttxhtxftx 
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System 
characterization

A requirements 
perspective

The Towers of 
Hanoi revisited

Multiformalism
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Do not fall in love with your model

-- Jacques LeFèvre
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