
Continuous-time Causal Block Diagrams

Assignment

1 Continuous-time CBDs

Continuous-time Causal Block Diagrams (CBDs) can be used to model causal
continuous-time systems [5, 1, 3]. It is implemented in tools such as Simulink R©

to model systems that evolve continuously over time, or that can be abstracted
as such.

In this assignment you will continue were you left with the simulator that
you have built in the previous assignment. You will extend this simulator to
allow it to simulate Continuous Time CBDs.

1.1 Tasks

1.1.1 Integral and Derivative Blocks

Complete the implementation of the IntegratorBlock and DerivatorBlock

classes in the CBD.py file. The implementation should be made using other
blocks, as was taught in the theory lectures.

1.1.2 Test Approximations

A simple harmonic oscillator1 with no friction exhibits a behavior that can be
modelled by the following second order Ordinary Differential Equation:

d2x

dt2
= −x

where x(0) = 0 and dx
dt (0) = 1.

For this task you need to:

a) Build a Continuous Time CBD that models the harmonic oscillator using
integral blocks – implement it in the CBDA.py file;

b) Simulate CBD A and plot the value of x over time.

c) Build a Continuous Time CBD that models the harmonic oscillator using
derivative blocks – implement it in the CBDB.py file;

d) Simulate CBD B and plot the value of x over time.
1https://en.wikipedia.org/wiki/Harmonic_oscillator

1

https://en.wikipedia.org/wiki/Harmonic_oscillator

1.1.3 Measure Error

This task builds on the previous one. You need to:

a) For CBD A, include blocks to measure the accumulated error being made in
the value of x against the real (analytical) solution of the harmonic oscillator
sin(t). The accumulated error is then given by e(t) =

∫
|sin(t) − x(t)|dt.

You will need to implement your own SinBlock to compute sin(t) and the
absolute value of its input. (Hint: use the self.getClock().getTime()

instruction to get the current time for the SinBlock).

b) Plot the error being made in the simulation of CBD A with at least two
different step sizes, for instance, with step size 0.1 and 0.001.

c) Repeat the previous two tasks for the CBD B.

I should be able to reproduce the results you got by running:

path/to/python -m cbd.examples.CBDA

path/to/python -m cbd.examples.CBDB

1.1.4 Document

Write about the tasks that you have accomplished and document your findings.
Include drawings of the CBDs and all the plots. Discuss the error measured in
task “Measure Error”. What happens to the error when the step size decreases?
And if, for the same time step, you compare the measured error in CBD A with
the measured error in the CBD B which one seems to yield a smaller error in a
long running simulation?

2 Controller Design and Tuning

In this assignment, you will learn the main challenges involved in creating a
simple controller for a complex continuous system. Furthermore, you will learn
about abstraction and the important role it plays in modeling. The CBD sim-
ulator that you built in the first part of this assignment will be required to
simulate all models created in this part.

2.1 Background

A control system is a system whose purpose is to command, direct or regulate,
itself or another system2.

Control systems abound. A human is a control system. As a simplistic
example, suppose that you want to grab an object. Your eyes allow your brain to
estimate the distance between the object and your hand; your brain commands
the muscles in your arm and hand to contract so as to move you hand closer to

2https://en.wikipedia.org/wiki/Control_system

2

https://en.wikipedia.org/wiki/Control_system

the object; the closer your hand is (distance given by the eyes) the slower your
arm and hand move to grab the object. In this example, your brain is acting as
the controller, the muscles in your hand and arm are actuators and your eyes
are sensors.

There are two kinds of control systems: closed-loop and open-loop systems.
The detailed distinction is not important here because we will be focusing in
closed-loop control systems, but keep in mind that your brain would act as a
open control system in the previous example, if you were to grab the object with
your eyes closed.

2.1.1 Closed-Loop Control Systems

As an example of a closed-loop control system, we will build a cruise control
system for a car. The cruise control system is responsible for maintaining the
car at an ideal velocity vi. To achieve this, the controller continuously measures
the car’s velocity v, compares it with the ideal velocity vi and accelerates or
decelerates the car accordingly.

In order to be able to simulate the control system, and because we do not
have access to a real car, we need a model of a car. The car model, in control
systems’ jargon is called the Plant. For this, let us consider a car with mass
M , under the influence of some force Ftraction , to be controlled by the control
system, and air drag Fdrag . The Ftraction force is what makes the car accelerate
or decelerate (if Ftraction is negative) so you can see it as the acceleration force.
Disregarding the gravity force, we can abstract the car as shown in Figure 1. The
traction force Ftraction pushes the car forward and the drag force Fdrag resists
the traction force by pushing the car in the opposite direction. The resulting
force Fres is the sum of these two forces and it gives the total acceleration of
the car:

Fres = Ftraction + Fdrag (1)

The drag force is given by the equation3:

Fdrag = −1

2
· p · v2 · CD ·A (2)

where p is the air (fluid) density, v the speed of the car relative to the air, A
the cross sectional area and CD the drag coefficient. The drag force is negative
because we are assuming that any motion forward, to the right in Figure 1, is
positive and any motion to the left is negative. The drag force pushes the card
to the left, hence it is negative.

Newton’s second law of motion states that the resulting force on an object
is equal to its mass times its acceleration:

Fres = M · a (3)

Merging equations 1 and 2 yields:

M · a = Ftraction −
1

2
· p · v2 · CD ·A (4)

3https://en.wikipedia.org/wiki/Drag_(physics)

3

https://en.wikipedia.org/wiki/Drag_(physics)

Figure 1: Car system under drag and traction forces.

At seal level and 15◦C, the air density p is approximately 1.225kg/m3 4.
For a Lamborghini Diablo, the product CD · A is 0.573m2 5 and its mass M is
1576kg 6. Notice that these constants are obtained empirically.

In Equation 4 the acceleration represents the rate of change of the velocity,
so:

a =
dv

dt
(5)

Using Equation 5 to replace a in Equation 4, plugging the Lamborghini
Diablo and air density parameters, and rewriting in terms of the rate of change
of velocity yields the following first order Ordinary Differential Equation:

dv

dt
=

1

1576

(
Ftraction −

1

2
· 1.225 · v2 · 0.573

)
; v(0) = 0 (6)

The control system decides the value of the Ftraction based upon the velocity v
of the car and some ideal velocity vi.

Coupling the control system with the car as one CBD model, we obtain the
continuous time CBD shown in Figure 2.

Without going into the internals of the control system, you can already guess
what its output – the traction force Ftraction – should be, based on its input –
the difference between the ideal velocity vi and the actual car’s velocity v: if the
difference vi − v is small, the car is close to the ideal velocity and the output
Ftraction should be small. Otherwise, if vi − v is large, then Ftraction should be
large too in order to speed the rate at which the car reaches the ideal velocity.

There are many possibilities to realize the cruise control system of the car.
The simplest one is the so-called Bang-bang control: we set two thresholds dmin

and dmax; if the difference vi− v exceeds dmax, then the controller sets Ftraction

to some positive value c; otherwise, if vi − v gets smaller than dmin, then the
controller sets Ftraction to 0. The real world effect on this is that the passenger
in the car would feel these sudden accelerations whenever the velocity drops
below a certain level. Hence the name “Bang-bang”.

4https://en.wikipedia.org/wiki/Density_of_air
5https://en.wikipedia.org/wiki/Automobile_drag_coefficient
6https://en.wikipedia.org/wiki/Lamborghini_Diablo

4

https://en.wikipedia.org/wiki/Density_of_air
https://en.wikipedia.org/wiki/Automobile_drag_coefficient
https://en.wikipedia.org/wiki/Lamborghini_Diablo

Figure 2: Car with the cruise control system. The ideal velocity is 15 m/s. The
control system should ensure that the car is kept at that velocity, despite the
air drag.

A slightly more sophisticated controller is the Proportional-Integral-Derivative
(PID) 7 controller: instead of setting thresholds, this controller relates the value
of the Ftraction to the difference vi − v. This relation is established by a sum of
three different controllers:

Proportional Controller – For some constant value Kp, this controller sets
Ftraction = Kp · (vi − v);

Integral Controller – For some constant value Ki, this controller sets Ftraction =
Ki ·

∫
(vi − v)dt;

Derivative Controller – For some constant value Kd, this controller sets

Ftraction = Kd · d(vi−v)
dt ;

In total, the PID Controller sets

Ftraction = Kp · (vi − v) + Ki ·
∫

(vi − v)dt + Kd ·
d(vi − v)

dt

Intuitively, the derivative component of the PID controller analyzes the speed
at which the difference vi − v evolves. If it is decreasing faster, the derivative
d(vi−v)

dt will be negative and the contribution of the derivative component will
be negative. In a sense, the derivative component is predicting the state of the
system in the following instants and trying to smooth the Ftraction accordingly.

7https://en.wikipedia.org/wiki/PID_controller

5

https://en.wikipedia.org/wiki/PID_controller

The integral component on the other hand, accumulates the difference vi−v
over time. The bigger that difference, the greater its contribution to Ftraction .
This component, if not properly tuned with the proportional and derivative
components, causes the velocity of the car to overshoot the ideal velocity. On
the other hand, if this component is not used, because of the effects of the drag
force, the car will not attain the desired speed.

Tuning the PID controller is the act of finding the best constants Kp, Ki and
Kd such that the cruise control behaves according to the requirements. These
requirements can vary. For the car example, a requirement might be to never
overshoot the ideal velocity and to reach it as fast as possible.

Figure 3 shows the CBD with the PID controller.

2.1.2 Mass-spring-damper System

For this assignment, we will need a slightly more complicated model to represent
a moving train with people in it. A mass-spring-damper is a good abstraction
for a wide range of physical systems. Multiple interacting mass-spring-damper
systems are used to model all sorts of rigid bodies and even human bodies [4]!
We will introduce you to this system and its governing equations and then, in
Section 2.5.1 we will show you how it can used in practice to model a more
complex system.

Figure 4 shows a representation of the mass-spring-damper system. It is
called a mass-spring-damper system because it has a mass (the rectangle in the
figure), a spring (the zig-zag drawn in the upper left part of the figure) and a
damper (the zig-zag enclosed in a rectangle in the lower left part of the figure).

For a spring, the intensity of the force of which the spring opposes compres-
sion is proportional to how compressed the spring is. So, in Figure 4, if there
is an external force pushing the mass to the left, displacing it by −x (note that
anything to the left is negative), the spring will exert a force in the mass in the
opposite direction: Fspring = −k(−x), where k is a constant.

A damper, on the other hand, opposes compression in a different way: A
slow compression of the damper will not be opposed with significant force. How-
ever, a fast compression will. The behaviour is independent of the amount of
compression. So, in Figure 4, if there is an external force applied to the mass,
pushing it to the left with a velocity of −v, the damper will exert an opposite
force in the mass: Fdamper = −c(−v), where c is a constant.

Applying the second law of Newton, the behaviour of the system shown in
Figure 4, under the influence of an external force Fext = f , yields the following
equations: 

Fext = −f
Fspring = −k(−x)

Fdamper = −c(−v)

M · a = Fext + Fspring + Fdamper

dv
dt = a
dx
dt = v

(7)

6

Figure 3: Cruise control system implemented with a PID controller.

Figure 4: Mass-Spring-Damper system with forces applied to the mass body.

7

Figure 5: Diver-less train.

Equation 7 can be converted to the following first order ODE:{
dv
dt = 1

M (−f + k · x + c · v)
dx
dt = v

(8)

Which can be converted into a CBD using integrators or derivatives, just like
you did in the previous assignments.

2.2 Driver-less Train

We wish to create a control system for a driverless train. The control system
will replace a human driver.

2.3 Scenario

We know that, to maximize space, and because most commuters travel short
distances, there are no seats in the train. There are many poles across the train
so that commuters can secure themselves while standing. Figure 5 shows one
carriage of this train with one passenger.

In the typical operation, the train communicates constantly with a central
computer, which receives the train position by GPS and sends the recommended
velocity to the control system of the train, which we are responsible for designing.

The control system replaces a human driver by constantly monitoring the
velocity of the train and accelerating or braking/decelerating the train, accord-
ing to the velocity ordered by the computer. Notice that, just as a human driver
would do and because people are standing, the control system cannot accelerate
too much as people might fall down.

2.4 Experiment

For the purposes of this experiment, you may assume that the train moves along
one dimension (the rail is flat and straight) and that it has only one carriage
with only one passenger inside, as we showed in Figure 5.

8

Figure 6: Example of the velocities given by the central computer system over
a period of 350 seconds.

The computer system is just a pre-defined script, as shown in Figure 6.
The velocities given by the computer are in meters per second (m/s); they are
positive naturals (including zero) and they cannot differ by more than 10m/s2.
This means the computer will never tell the train to stop (velocity zero) and,
one second later, to go at 20m/s. In the worst case, it will tell the train to go
at 10m/s.

The control system, for the ideal velocity example shown in Figure 6, must
ensure the a correct and optimal operation of the train.

A correct operation of the train means that:

• the train, given enough time, will attain the ideal velocity and

• no passenger in the train will fall due to acceleration/deceleration.

• the train will not go backwards (negative velocity) unless the computer
orders it to.

An optimal operation of the train is:

• a correct operation, and

• the train attains, as fast as possible, the velocity ordered by the computer.

Notice that the train can overshoot/undershoot the desired velocity.

9

Figure 7: Plant abstraction.

2.5 Plant Model

In order to create the control system, and because we do not have access to a
real train with real people and the computer system, we need to create a model
of them. This is called the plant model.

2.5.1 Abstractions

For the system and the experiment described in the previous sections, there
are many possible ways to create a model of the driver-less train, each with
different degrees of fidelity. A high fidelity model mimics the real system in a
more accurate way than a lower fidelity model.

For our experiment we are only interested in whether a passenger, subjected
to the inertial force of the train accelerating, can fall. For this it is sufficient to
measure horizontal displacement of that passenger.

A passenger that is grabbing the pole in the train can be modelled as a single
mass that is connected to a spring and a damper to the pole, as is shown in
Figure 7. This is a low fidelity model. If we were experimenting with a passenger
walking or running in the train, we would need a higher fidelity model such as a
set of interconnected masses, spring and dampers. There are innumerous ways
to model the mechanics of the human body. If you are interested in those, please
read a good review in [4].

In the next section you will see why Figure 7 is a good abstraction.
The utility of the model is related to the experiment that you want to per-

form. By consequence, the fidelity of the model should the appropriate to the
experiment. “A model should be as simple as possible, but no simpler”, Einstein.

As for the rest of the plant, there are also many possible decisions about
which abstractions to use. We decided to keep things simple and assume that
there is no friction between the train and the rail, and no friction between the
passenger and the train.

10

2.5.2 Equations

After settling on the abstractions to use, we need to come up with the equations
that model the behaviour of the abstraction that we have introduced.

Figure 8 shows the free body diagram of the passenger and the train. We
have separated the elements to make it easier to understand the forces acting
in each body but notice that they are still connected. An intuitive way to
come up with these forces is to imagine what would happen if an external force
Ftraction pushed the train forward (in the right direction), accelerating it. The
train would eventually move forward. The passenger inside the train, would
immediately feel the acceleration of the train, as a force Finertia acting upon
the passenger, opposite to the direction of the movement of the train. Depending
on the passenger’s mass, this force can be really strong or not. For a really thin
passenger (think of an ant), this force would be really weak, almost imperceptible
but for a really big passenger, it would be stronger. So this fictitious force8 is
proportional to the mass of the passenger:

Finertia = −mpassger ∗ ainertia

The force is negative because it pushes the passenger in the negative (left)
direction.

As soon as the passenger start to move in the left direction, the passenger will
exert a force in the spring and a force in the damper (these are not represented
in the free body diagram). The reactions to these two forces are the forces
exerted in the passenger by the spring Fspring and by the damper Fdamper, in
the right direction.

When the passenger exerts a force in the spring (in the negative/left direc-
tion), the spring will be displaced from its normal position. The result is that
the spring will exert a positive force in the passenger that is proportional to its
displacement:

Fspring = k(−xpassger)

Notice that Fspring is positive because it pushes the passenger in the right
direction. The −xpassger is positive because the passenger is displaced in the
left direction.

Similarly, when the passenger exerts a force in the damper, it will be dis-
placed but in this case, the force that is exerted in the passenger is proportional
to the velocity of the displacement of the damper:

Fdamper = c(−vpassger)

Notice that vpassger is the derivative of xpassger.
The resulting force in the passenger is the sum of all the forces acting upon

it:
Fpassger = Finertia + Fspring + Fdamper

8https://en.wikipedia.org/wiki/Fictitious_force#Acceleration_in_a_straight_

line

11

https://en.wikipedia.org/wiki/Fictitious_force#Acceleration_in_a_straight_line
https://en.wikipedia.org/wiki/Fictitious_force#Acceleration_in_a_straight_line

Figure 8: Free body diagram of the train and the passenger.

Applying to Newton’s second law to the passenger, we get

Fpassger = mpassger ∗ apassger = Fspring + Fdamper + Finertia ⇔
mpassger ∗ apassger = k(−xpassger) + c(−vpassger)−mpassger ∗ ainertia

Doing the same thing to the train, we get:

Ftrain = (mtrain + mpassger) ∗ atrain = Ftraction + Fdrag

with

Fdrag = −1

2
· p · v2train · CD ·A

as in Equation 2. Notice that the total mass of the train includes the mass of
the passenger.

We still do not know ainertia. This is the acceleration felt by the passenger
when the train accelerates forward. It is of the same intensity in absolute value
as the acceleration of the train, that is, atrain = ainertia.

In summary, we have the following system:

mpassger ∗ apassger = k(−xpassger) + c(−vpassger)−mpassger ∗ atrain
(mtrain + mpassger) ∗ atrain = Ftraction + Fdrag

Fdrag = − 1
2 · p · v

2
train · CD ·A

apassger =
dvpassger

dt

vpassger =
dxpassger

dt

atrain = dvtrain

dt

vtrain = dxtrain

dt

12

We can convert it to first order Ordinary Differential Equation form by replacing
the accelerations by the derivatives of the velocities in the right hand of the
equations and replacing the atrain term in the left hand by its solution Ftraction

mtrain
:

dvpassger

dt =
k(−xpassger)+c(−vpassger)−mpassger∗

Ftraction
(mtrain+mpassger)

mpassger

dvtrain

dt =
Ftraction− 1

2 ·p·v
2
train·CD·A

(mtrain+mpassger)
dxpassger

dt = vpassger
dxtrain

dt = vtrain

(9)

The values for the other constants that give somewhat realistic values are
[2]: 

mpassger = 73kg

mtrain = 6000kg

k = 300

c = 150

CD = 0.6

p = 1.2

A = 9.12

(10)

You will build a CBD from the Equation 9 just like in the previous assign-
ments.

Ftraction is currently unknown because it will be the output of the control
system. However, for testing purposes, we can assume it has a predefined tra-
jectory. Whenever Ftraction has a positive intensity, the train accelerates the
people are displaced, as shown in the blue trajectory of Figure 9. Ftraction is a
predefined trajectory shown in 10.

You can also use Figure 9 to convince yourself that the model is appropri-
ate for our experiment. When the train suddenly accelerates, the passenger
gets displaced by more than 2 meters. This is a huge displacement and of
course means that the passenger has fallen but this happens because we have
pre-defined Ftraction values, without a proper control system. So, ignoring the
absolute values of the displacement and observing the general trajectory we see
that the passenger is initially taken by surprise with the sudden acceleration.
However, after a while, the passenger is stabilized and gets used to (or stabi-
lizes) the acceleration, due to the fact that the drag force acting on the train
eventually equalizes the traction force, meaning that the train proceeds at a
constant velocity. Whenever there is acceleration in the train, the passenger
gets displaced, before recovering.

2.5.3 Controller Requirements

Having a working model of the plant, we can now come up with proper require-
ments for our controller.

13

Figure 9: Trajectories of the train acceleration and the passenger’s reaction
when the train acceleration is not controlled.

Figure 10: Train traction force Ftraction profile.

14

Figure 11: Top-level of the complete train system.

The experiment done previously (see Figure 9) shows how sudden changes in
the acceleration of the train can have a huge impact on the displacement of the
passenger. So one of the requirements is that the controller never applies a force
Ftraction strong enough to make the passenger fall. We also provide a concrete
condition to detect whether the passenger has fallen: whenever the absolute
value of the displacement of the passenger exceeds 0.4m then the passenger is
considered to have fallen.

The control system should be implemented with a PID Controller. The input
to the control system is the difference between the ideal velocity vi and the
velocity of the train vtrain; and the output is the Ftraction force. The controller,
the computer system and the plant are shown as CBDs in Figure 11. The
computer system is abstracted as the predefined trajectory shown previously in
Figure 6. Section 2.6.1 shows how to model it.

2.6 Tasks

2.6.1 Implement a Look-up Block

A look-up block is a CBD block that implements a predefined trajectory over
time such as the one shown in Figure 6. It is useful to model the computer
system, as shown in Figure 11.

ComputerBlock extends from the BaseBlock class. This block has one input
(the current time) and one output (the value). Its output, at any point in time,
is given as summarized in Table 1. Notice that the time is explicitly represented
in the model as a counter an increment of h.

The implementation should be done in ComputerBlock.py.

2.6.2 Build and simulate the Driver-less train CBD Model

This task consists of building and simulating the complete CBD model shown in
Figure 11 in TrainCBD.py. The equations for the train and the passenger are in
Equation 9, with the constants in Equations 10, and the computer is modelled
with the Look-up block created in the previous task.

15

Table 1: Look-up Block table that implements the ideal velocity trajectory
shown in Figure 6.

time output
<10 0

<160 10
<200 4
<260 14
>260 6

For this task, use the following values for the PID controller parameters:
Kp = 200

Ki = 0

Kd = 0

Use the figures 13 and 14 to validate your model. Your results should match
the ones shown in the figures. It also is clear that the initial parameters of the
controller ensure that the passenger never falls, that is, the controller is correct
(recall Section 2.5.3) but it certainly is not optimal.

2.6.3 Tune the PID controller

If you recall Section 2.5.3, our purpose is tune the PID Controller such that it
is correct and optimal. Tuning the PID controller boils down to finding good
values for the constants Kp, Ki and Kd. This can be done automatically or
manually. Either way, it is a trial and error process:

1. Given some initial values for Kp, Ki and Kd;

2. Simulate the CBD;

3. Evaluate the results (using a cost model);

4. Set new values for Kp, Ki and Kd;

5. Repeat steps 2-4 until the results are satisfactory.

Manually or automatically, this is an optimization task. We need to define
our evaluation (or cost) model so that we know when we have improved or not.
For this task, a custom cost model is provided as a form of a CBD Block in
the file TrainCostModelBlock.py. You can use the custom cost model block as
shown in Figure 12. Notice that the cost model block needs the time step delta
to be given as an input, just like the integrator block.

The output of the cost model block is the current cost of the model, which is
an accumulation of the past values of the cost. The final cost is the last value,
at the last simulation step, outputted by the block.

16

Figure 12: Top-level of the complete train system with the custom cost model
block.

Your task is to find proper constants such that the cost model is as low as
possible, while satisfying the correctness requirements specified in Section 2.5.3.

An optimal set of parameters will minimize the time it takes for the train
to cross the desired velocity. It can overshoot but it cannot become a negative
velocity. If some of the correctness requirements is not satisfied, the cost model
block will automatically halt the simulation with a SimulationException.

There are two levels of sophistication, that will be reflected in your grade,
for the realization of this task:

Manual Tuning – You perform the optimization manually.

Automatic Tuning in Python – You perform the optimization automati-
cally by building an optimization loop that calls the CBD simulator at
each iteration, evaluates the cost model and changes the constants. How
you change the constants is your choice. In the limit, you can simply in-
crement/decrement them by 1, compute the cost for each combination of
values for the constants, store them and later pick the combination yielded
the minimum cost. Make sure you discard combinations which cause the
passenger to fall.

Implement this task in TrainTunning.py.

2.6.4 Document

Write a small report containing the tasks that you have completed and how
you have completed them. Include all the plots that you have made from the
simulations. The CBD model that you have built should be displayed graphically
in the report. You can use the draw function, defined in the CBDDraw.py file to
export your model as a DOT (Graph Description Language)9 model. You can
then use the generated DOT file to draw the graph with the GraphViz tool or
online: http://graphs.grevian.org/.

9https://en.wikipedia.org/wiki/DOT_(graph_description_language)

17

http://graphs.grevian.org/
https://en.wikipedia.org/wiki/DOT_(graph_description_language)

Figure 13: Plot of the train’s velocity and the recommended velocity using the
initial parameters given in Section 2.6.2.

2.7 Results

Figures 13 and 14 show my results. Use these to validate your model.

References

[1] Karl J Aström and Bjorn Wittenmark. Computer-controlled systems: theory
and design. Courier Corporation, 2011.

[2] C J Baker and N J Brockie. Wind tunnel tests to obtain train aerodynamic
drag coefficients: Reynolds number and ground simulation effects. Journal
of Wind Engineering and Industrial Aerodynamics, 38(1):23–28, 1991.

[3] Chi-Tsong Chen. Linear System Theory and Design. Oxford University
Press, Inc., New York, NY, USA, 2nd edition, 1995.

[4] a a Nikooyan and a a Zadpoor. Mass-spring-damper modeling of the human
body to study running and hopping : an overview. Proceedings of the insti-
tution of mechanical energineers part H-journal of engineering in medicine,
pages 1121 – 1135, 2011.

[5] Ernesto Posse, Juan de Lara, and Hans Vangheluwe. Processing causal block
diagrams with graphgrammars in atom3. In European Joint Conference on
Theory and Practice of Software (ETAPS), Workshop on Applied Graph
Transformation (AGT), pages 23–34, 2002.

18

Figure 14: Plot of the passenger’s displacement and the train’s acceleration
using the initial parameters given in Section 2.6.2.

19

	Continuous-time CBDs
	Tasks
	Integral and Derivative Blocks
	Test Approximations
	Measure Error
	Document

	Controller Design and Tuning
	Background
	Closed-Loop Control Systems
	Mass-spring-damper System

	Driver-less Train
	Scenario
	Experiment
	Plant Model
	Abstractions
	Equations
	Controller Requirements

	Tasks
	Implement a Look-up Block
	Build and simulate the Driver-less train CBD Model
	Tune the PID controller
	Document

	Results

