
DSM-TP 2016
—

Modeling
Variability
Andrzej Wąsowski

VARIETE, DFF SAPERE AUDE

PROCESS AND SYSTEM MODELS GROUP

Drowning in Clone-And-Own

blue.cc

blue.cc

CHANGE

blue.cc

green.cc green.cc

blue.cc

green.cc

BUG FOUND
INDEPENDENTLY

INDEPENDENT
BUG FIXES

?

c© Andrzej Wąsowski, IT University of Copenhagen 2

Opportunistic Reuse Does Not Work

I Common scenario:
version the code, reuse when opportunity appears

I If the file to be reused needs change, copy it
You clone-and-own it

I Benefit from quickly available functionality
I But have to test, debug, change and

evolve the file yourself
I Product specific code grows
I Platform code diminishes

and degrades shared
platform

code

product
code

product
code

product
code

product
code

build
system

build
system

build
system

build
system

c© Andrzej Wąsowski, IT University of Copenhagen 3

SUCCESSFUL REUSE IS

PROACTIVE
PLANNED
MANAGED

c© Andrzej Wąsowski, IT University of Copenhagen 4

AGENDA

I SPL Method, Architecture
I Variability Implementation Spectrum
I Variability Abstraction: Feature Modeling
I Variability Modeling in Practice
I Variability Realization

c© Andrzej Wąsowski, IT University of Copenhagen 5

Domain vs Application Processes
Pohl et. al. Software Product Line Engineering

c© Andrzej Wąsowski, IT University of Copenhagen 6

A Simple Product Line Architecture
va

ri
ab

il
it

y
re

al
iz

at
io

n
va

ri
ab

il
it

y
ab

st
ra

ct
io

n

build
system

#
CPUFreq processor drivers
#
CONFIG_X86_PCC_CPUFREQ=m
CONFIG_X86_ACPI_CPUFREQ=y
CONFIG_X86_POWERNOW_K6=y
CONFIG_X86_POWERNOW_K7=y
CONFIG_X86_POWERNOW_K7_ACPI=y
CONFIG_X86_POWERNOW_K8=y
CONFIG_X86_GX_SUSPMOD=y
CONFIG_X86_SPEEDSTEP_CENTRINO=y
CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE=y
CONFIG_X86_SPEEDSTEP_ICH=y
CONFIG_X86_SPEEDSTEP_SMI=y
CONFIG_X86_P4_CLOCKMOD=m
CONFIG_X86_CPUFREQ_NFORCE2=y
CONFIG_X86_LONGRUN=y
CONFIG_X86_LONGHAUL=y
CONFIG_X86_E_POWERSAVER=mva

ri
ab

il
it

y
re

so
lu

ti
o

n

co
n

fo
rm

s
co

n
fi

gu
re

d
 a

ga
in

st

core assets
platform product

specific
assets

I Less product specific = more reuse: development/tests/debugging/build
I Model of commonality and variability.
I Scope under control. Explicit feature life cycle

c© Andrzej Wąsowski, IT University of Copenhagen 7

Exploit commonality
Manage variability

c© Andrzej Wąsowski, IT University of Copenhagen 8

AGENDA

I SPL Method, Architecture
I Variability Implementation Spectrum
I Variability Abstraction: Feature Modeling
I Variability Modeling in Practice
I Variability Realization

c© Andrzej Wąsowski, IT University of Copenhagen 9

Spectrum of Variability Architectures
Stay as close to the left as possible

property & configuration files + build system

feature models + build system

feature models + product specific code

domain specific languages + code generation

frameworks + framework completion code

only product specific code (no reuse)

c© Andrzej Wąsowski, IT University of Copenhagen 10

Implementation Technologies

I Variability abstraction: FMs, DSLs, or none
I Variability resolution:

XML property file
FM configuration
Domain specific model (DSM)

I Variability realization:
general purpose code
w/ variability techniques
code generators
model transformers
parts may use DSLs
etc.

va
ri

ab
il

it
y

re
al

iz
at

io
n

va
ri

ab
il

it
y

ab
st

ra
ct

io
n

build
system

#
CPUFreq processor drivers
#
CONFIG_X86_PCC_CPUFREQ=m
CONFIG_X86_ACPI_CPUFREQ=y
CONFIG_X86_POWERNOW_K6=y
CONFIG_X86_POWERNOW_K7=y
CONFIG_X86_POWERNOW_K7_ACPI=y
CONFIG_X86_POWERNOW_K8=y
CONFIG_X86_GX_SUSPMOD=y
CONFIG_X86_SPEEDSTEP_CENTRINO=y
CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE=y
CONFIG_X86_SPEEDSTEP_ICH=y
CONFIG_X86_SPEEDSTEP_SMI=y
CONFIG_X86_P4_CLOCKMOD=m
CONFIG_X86_CPUFREQ_NFORCE2=y
CONFIG_X86_LONGRUN=y
CONFIG_X86_LONGHAUL=y
CONFIG_X86_E_POWERSAVER=mva

ri
ab

il
it

y
re

so
lu

ti
o

n

co
n

fo
rm

s
co

n
fi

gu
re

d
 a

ga
in

st
core assets
platform

c© Andrzej Wąsowski, IT University of Copenhagen 11

AGENDA

I SPL Method, Architecture
I Variability Implementation Spectrum
I Variability Abstraction: Feature Modeling
I Variability Modeling in Practice
I Variability Realization

c© Andrzej Wąsowski, IT University of Copenhagen 12

Problem Space Solution Space

SMS notification on transaction

paid services

SMSLoggerAspect

Phone No. in data model

features

variation points

invoice code.cs
int sort (int[] A, comp ope)
{
 if (A == null)
 return -1;

 for (int i = 0; i < A.size(); I++)
 {
 print (A[i].toString());
 }
}

c© Andrzej Wąsowski, IT University of Copenhagen 13

CVL Architecture for Dummies
The degree of coupling can be controlled by moving the mapping

Variability Abstraction

Variability Realization

Base (model)

Feature/Decision Models

Feature Mapping

Source Code

c© Andrzej Wąsowski, IT University of Copenhagen 14

CVL submitters. Common Variability Language, OMG Revised Submission. 2012

Feature Modeling (I)

feature:
a single variability increment in the problem domain (decision)

variation point:
a single variability increment in the solution space

c© Andrzej Wąsowski, IT University of Copenhagen 15

Feature Modeling (II)
Example from Czarnecki’02

mandatory

pulls trailerenginebody

car

electric gasoline automatic manual

optional

exclusive choice

inclusive choice

transmission

I Hierarchy constraints, for example:
manual requires transmission (each child node requires its parent node)

I Groups constraints: engine is electric or gas driven or both
I Not all constraints in hierarchy & groups, cross-tree constraints in text:

electric requires automatic
I Attributes are added like to classes (eg. engine volume)

c© Andrzej Wąsowski, IT University of Copenhagen 16

Feature Modeling (III)
Configuration

mandatory

pulls trailerenginebody

car

electric gasoline automatic manual

optional

exclusive choice

inclusive choice

transmission

electric requires automatic

+ +
+ +

+ + +
c© Andrzej Wąsowski, IT University of Copenhagen 17

Feature Models (IV)
An example meta-model from Janota’08

Feature

Root FeatureGrouped
Feature

Solitary
Feature

Group

2..*

1

0..*

Sub-feature
Relation Type

Mandatory
Sub-feature

Optional
Sub-featureXOR-groupOR-group

1

10..*

is
su

b-
fe

at
ur

e

a. The metamodel

gas electric

engine

car

car-body

manual automatic

gearshiftpower-locks

Root Feature

Mandatory
Sub-feature

Optional
Sub-feature

or-group

xor-group

b. An example of a feature diagram, inspired by [7]

Fig. 6. The Language of Propositional Feature Diagrams

4 Background: Propositional Feature Models

Let us recall the language of feature models, exploited as an example in the
upcoming sections. Feature models [15] are used to systematically describe vari-
ability and commonality in product line engineering [4]. In a nutshell, a feature
corresponds to a specific functionality of a system. A feature model records
available features, together with constraints and dependencies relating them.

A variety of feature diagram languages is found in the literature, mostly with
propositional semantics [21]. We should note, however, that other semantics ex-
ist, for instance using grammars [2], higher-order [12] and probabilistic [8] logic.
In this article we operate on the combinatorial core of feature models, the propo-
sitional models [7]. A propositional feature model comprises a feature diagram
and a constraint. The diagram is the centerpiece. It records the features and
dependencies in a graph-based notation. An additional constraint is appended
if it cannot be expressed in the diagrammatic language itself.

A feature diagram organizes features in a tree, containing a node for each
feature. A child node, or a sub-feature, is either optional, mandatory, or grouped.
A grouped feature belongs either to an or-group or an xor-group with other
sub-features of the same parent. Fig. 6a shows the metamodel of this language.

Apart from hierarchically organizing the features, the purpose of the diagram
is to determine which combinations of features, so-called feature configurations,
are permitted. The root feature must be present in all configurations. A sub-
feature must not be selected into a configuration not containing its parent. A
mandatory feature is required by its parent, whereas an optional one is not. From
features grouped in an or-group (resp. xor-group) at least one (resp. exactly one)
must be selected whenever the parent is selected. The feature diagram in Fig. 6b
describes possible configurations of a car. Each car must have a body, gearshift,
and engine; an engine is electric or gas (selecting both corresponds to a hybrid
engine); a gearshift is either automatic or manual.

meta-model (abstract syntax)

I Note a single generic kind of relations: subfeature
I No distinction between kind-of (inheritance) and part-of (containment),

like class modeling does
I A characteristic feature of configuration and constraint languages

(as opposed to structural modeling languages)
I Clafer (as a structural modeling langauge) supports the distinction,

but so do other feature modeling languages

c© Andrzej Wąsowski, IT University of Copenhagen 18

Feature Modeling and FODA
Feature Oriented Design and Analysis by Kang et al. 1990

I FODA succeeds for its simplicity
I Probably best intro in Czarnecki’s Generative Programming (Chpt. 4)
I 3950+ citations, never formally published

c© Andrzej Wąsowski, IT University of Copenhagen 19

Feature Modeling vs Class Modeling
A feature model in Product Variant Master Notation (Hvam)

A feature model

A roughly equivalent class diagram

More on this: Bąk. Czarnecki. Wąsowski. Feature and Meta-Models in Clafer: Mixed, Specialized,
and Coupled. SLE 2010

Above models from: Haug. Degn. Poulsen. Hvam. Creating a documentation system to support
the development and maintenance of product configuration systems

c© Andrzej Wąsowski, IT University of Copenhagen 20

Applications of Feature Models

Design & Management

domain
modeling

product line scoping
product line mngmt

code generation
driving build system

driving
testing

Development & Test

c© Andrzej Wąsowski, IT University of Copenhagen 21

How To Build Feature Models?
Two strategies, but only one good :)

I Big-bang adoption
I Perform careful domain

analysis
I Document concepts,

abstractions and relations
between them in a FM

top-down

I Identify a cloned component
I Find the patches that describe

differences
I Translate diffs to variation

points
I Organize variation points into

features, and a hierarchy
I Works well with incremental

adoption
I See SPLC07 paper by Danfoss

bottom-up

c© Andrzej Wąsowski, IT University of Copenhagen 22

Hans Peter Jepsen, Jan Gaardsted Dall, Danilo Beuche. Minimally Invasive Migration to Software Product
Lines. SPLC 2007

AGENDA

I SPL Method, Architecture
I Variability Implementation Spectrum
I Variability Abstraction: Feature Modeling
I Variability Modeling in Practice
I Variability Realization

c© Andrzej Wąsowski, IT University of Copenhagen 23

Variability Modeling is
The Success Story of Modeling

c© Andrzej Wąsowski, IT University of Copenhagen 24

A Laboratory Feature Model

c© Andrzej Wąsowski, IT University of Copenhagen 27

Czarnecki, Wąsowski. Feature Diagrams and Logics: There and Back Again. In: 11th International
Software Product Line Conference (SPLC 2007) Kyoto, Japan, 10-14 September, 2007 c© IEEE Press.

A Healthy Wild Feature Model Cub
ToyBox project, 71 features

ONEIT

GEN

DIRNAME

PIPES

MKFIFO PATCH

F

TTY

ToyBox

Global settings Toys

TOYSH

FLOWCTL CD EXIT P QUOTES BUILTINS TTY

BASENAME UNAME MKSWAP

LOCALS

ARRAYS

JOBCTL

BZCAT SLEEP CKSUM CHROOT

CONFLONG

TEE ECHO SED

WILDCARDS

LISTEN

CPDEBUG WHICH PWD SEQ RMDIR

BIGPEDANTIC

MKE2FS

EXTENDED JOURNAL LABEL

FALSEFREE COUNTTOYBOX SHA1SUM TRUE TOUCH DF CAT CHVT HELP SORT READLINK DMESG HELLO NETCAT YES SYNC MDEV CATV

PROCARGS ENVVARS PROFILE

The Linux Kernel has 6-12K features, depending how you count!
But maximum depth is 8, most leaves are at 4!

↓ this is the Linux kernel model fit to the slide width ↓

c© Andrzej Wąsowski, IT University of Copenhagen 28

Berger, She, Lotufo, Wąsowski, Czarnecki. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions in Software Engineering, 2013

Is FODA special? Not really!
eCos configurator

I Linux kernel and eCos operating system use similar configurator,
controlled by textual variability models

I Trees become unwieldy very fast
I Many tools used linearized trees, like above
I Nice trees are good for PowerPoint, whiteboard and brainstorming

c© Andrzej Wąsowski, IT University of Copenhagen 29

It is easy to design a textual syntax
Kconfig of Linux kernel, designed by non-experts, with no tools

CDL of eCos, designed by non-experts, with no tools

c© Andrzej Wąsowski, IT University of Copenhagen 30

CVL Architecture for Dummies
The degree of coupling can be controlled by moving the mapping

Variability Abstraction

Variability Realization

Base (model)

Feature/Decision Models

Feature Mapping

Source Code

c© Andrzej Wąsowski, IT University of Copenhagen 31

CVL submitters. Common Variability Language, OMG Revised Submission. 2012

CVL Architecture for Linux Junkies

Variability Abstraction

Variability Realization

Base (model)

KConfig files

KBuild files + CPP

C-code

c© Andrzej Wąsowski, IT University of Copenhagen 32

Grid View in Pure•Variants

I Commercial tools support multiple views of the same model
I Some vendors: Pure Systems (DE), Big Lever (US), most PLM tools
I Clafer also has the grid view

c© Andrzej Wąsowski, IT University of Copenhagen 33

Are all variability models trees?
A Fire Alarm System

I detection zones
I alarm zones
I wiring
I three different

structures
I Modeled as

constrained class
diagrams!

I Sometimes called
topological
variability

Berger. Stanciulescu. Øgård. Haugen. Larsen. Wąsowski. To connect or not to connect: experiences
from modeling topological variability. SPLC 2014
Fantechi. Topologically configurable systems as product families. SPLC 2013

c© Andrzej Wąsowski, IT University of Copenhagen 34

Modeled using class diagrams in Papyrus
A model view showing two model hierarchies

PowerLoopDriverAL_ComInterface

ExternalComs

IO_Module

OperationPanel AutroFieldBus

OperationZoneDomain Group

AutroSafePanel

AFB_PowerControl

Installation

AFB_Unit

AlarmZone DetectionZone

 [1]

 [*]

 [1]

 [*]

 [1]

 [*]

 [1]

 [1]

 [1]

 [1..*]

 [1]

 [1]

 [1]

 [1..32]

 [1]

 [*]

 [1]

 [1..*]

 [1]

 [0..7] [1]

 [1..32]

physical
structure

logical structure

A home grown
configurator used
to instantiate mod-
els

c© Andrzej Wąsowski, IT University of Copenhagen 35

AGENDA

I SPL Method, Architecture
I Variability Implementation Spectrum
I Variability Abstraction: Feature Modeling
I Variability Modeling in Practice
I Variability Realization

c© Andrzej Wąsowski, IT University of Copenhagen 36

Connect Abstraction to Realization
Most of the school is about it :)

va
ri

ab
il

it
y

re
al

iz
at

io
n

va
ri

ab
il

it
y

ab
st

ra
ct

io
n

build
system

#
CPUFreq processor drivers
#
CONFIG_X86_PCC_CPUFREQ=m
CONFIG_X86_ACPI_CPUFREQ=y
CONFIG_X86_POWERNOW_K6=y
CONFIG_X86_POWERNOW_K7=y
CONFIG_X86_POWERNOW_K7_ACPI=y
CONFIG_X86_POWERNOW_K8=y
CONFIG_X86_GX_SUSPMOD=y
CONFIG_X86_SPEEDSTEP_CENTRINO=y
CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE=y
CONFIG_X86_SPEEDSTEP_ICH=y
CONFIG_X86_SPEEDSTEP_SMI=y
CONFIG_X86_P4_CLOCKMOD=m
CONFIG_X86_CPUFREQ_NFORCE2=y
CONFIG_X86_LONGRUN=y
CONFIG_X86_LONGHAUL=y
CONFIG_X86_E_POWERSAVER=mva

ri
ab

il
it

y
re

so
lu

ti
o

n

co
n

fo
rm

s
co

n
fi

gu
re

d
 a

ga
in

st

core assets
platform product

specific
assets

c© Andrzej Wąsowski, IT University of Copenhagen 37

Feature Models vs DSLs

I Feature models are ready and simple (no design effort, deep insight)
I DSL requires design effort, but rewards with more expressiveness
I Effort also translates to maintenance
I FM effort is offset by existing feature modeling tools
I DSL development effort is offset by language workbenches

Fe
at

u
re

M

o
d

e
l

#
CPUFreq processor drivers
#
CONFIG_X86_PCC_CPUFREQ=m
CONFIG_X86_ACPI_CPUFREQ=y
CONFIG_X86_POWERNOW_K6=y
CONFIG_X86_POWERNOW_K7=y
CONFIG_X86_POWERNOW_K7_ACPI=y
CONFIG_X86_POWERNOW_K8=y
CONFIG_X86_GX_SUSPMOD=y
CONFIG_X86_SPEEDSTEP_CENTRINO=y
CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE=y
CONFIG_X86_SPEEDSTEP_ICH=y
CONFIG_X86_SPEEDSTEP_SMI=y
CONFIG_X86_P4_CLOCKMOD=m
CONFIG_X86_CPUFREQ_NFORCE2=y
CONFIG_X86_LONGRUN=y
CONFIG_X86_LONGHAUL=y
CONFIG_X86_E_POWERSAVER=mC

o
n

fi
gu

ra
ti

o
n

D
SL

 M
e

ta
-

M
o

d
e

l
D

SL
 M

o
d

e
l

Debug Level :int Compress Data

Journalling Flash File System

Misc. Filesystems

Support ZLIB Default Compression

None SizePriority

conforms to conforms to

c© Andrzej Wąsowski, IT University of Copenhagen 38

Advice on Realization
[Stahl and Völter]

I Choose functional domain concepts as features / DSL concepts
I Start a small domain model and grow it iteratively
I Keep the build automatic at all times
I Generate/synthesize legible code/models
I We follow these principles in the Clafer tutorial on railway stations

c© Andrzej Wąsowski, IT University of Copenhagen 39

c© Andrzej Wąsowski, IT University of Copenhagen 40

c© Andrzej Wąsowski, IT University of Copenhagen 41

AGENDA

I SPL Method, Architecture
I Variability Implementation Spectrum
I Variability Abstraction: Feature Modeling
I Variability Modeling in Practice
I Variability Realization

c© Andrzej Wąsowski, IT University of Copenhagen 42

