
Unifying Model- and Screen Sharing
Yentl Van Tendeloo

University of Antwerp, Belgium
Yentl.VanTendeloo@uantwerpen.be

Hans Vangheluwe
University of Antwerp, Belgium

Flanders Make vzw, Belgium
McGill University, Canada

Hans.Vangheluwe@uantwerpen.be

Abstract—The complexity of engineered systems is ever in-
creasing, resulting in a plethora of larger and more diverse mod-
els. This increase in complexity can be addressed by collaborative
model development, also known as Concurrent Engineering. We
distinguish two distinct types of collaboration, based on the
different collaboration needs between modellers: screenshare and
modelshare. Screenshare allows users to collaborate –often at the
same time– using exactly the same visualization. This implies
that even the most trivial model modifications, even semantics-
preserving ones, are replicated for all users. Modelshare allows
users to share the same model, albeit with different visualiza-
tions, offering different views on the model, as standardized
in ISO/IEC/IEEE 42010:2011. Both types of collaboration are
currently in use. We present a unifying framework integrat-
ing both approaches. This unifying framework is similar to
our existing framework for concrete syntax, reusing existing
modelling tool infrastructure. This allows for different types of
collaboration to be intertwined: screensharing with some users,
while modelsharing with other users.

I. INTRODUCTION

The complexity of engineered systems is ever increasing,
resulting in a plethora of larger and more diverse models.
This increase in complexity can be addressed by collaborative
model development, also known as Concurrent Engineering.

We distinguish multiple types of sharing, at different levels
of access to model elements. In particular, we focus on
screenshare and modelshare, terms used in AToMPM [1], a
collaborative, web-based (meta-)modelling environment. With
screenshare, different modellers share the exact same rep-
resentation of a model, offering the experience of working
on a shared modelling canvas. With modelshare, different
modellers share the same model, but have different views (with
different visualizations) on this model. Whereas both types of
collaboration have their advantages and disadvantages, they
require significantly different implementations.

These two types of collaboration are mostly orthogonal
to collaboration algorithms focussing on consistency/conflict
resolution, such as (partial) model locking [2], token-based
control [3], and model versioning [4], [5]. Implementations
of these algorithms must take into account the different types
of sharing (i.e., modelshare or screenshare). For example, in
screensharing it is important that the visual position of model
elements is locked while a user drags it. This is not required
with modelsharing. Groupware, which collaboration is a part
of, is gaining in importance [6], and is since long considered as
difficult to create [7]. While several advancements have been

made, implementing a collaborative environment still requires
much thought about corner cases [8].

We present a unifying framework for the above two types
of sharing. This allows for a unified implementation, which
can be combined with all other aspects of collaboration, such
as conflict resolution algorithms. Additionally, both types of
sharing can be used within the same tool, but also allows for
combinations, where some users perform screensharing with
other users using modelsharing, all on the same model.

The unifying framework is based on our existing framework
for dealing with the concrete syntax [9] of models in a Multi-
Paradigm Modelling (MPM) [10], [11] environment. This
existing framework has additional advantages, some of which
are also relevant in the context of collaboration, as we will
present later. It is possible that this framework is already
supported in a tool, in which case our approach to model
collaboration comes at minimal cost.

We have implemented this approach in our Multi-Paradigm
Modelling environment, named the Modelverse [12]. Through-
out this paper, we present the running example of a Causal
Block Diagrams (CBD) (also known as Synchronous Data
Flow) model. The CBD language is a simple yet realistic
language, used to model complex mathematical equations.
A well known CBD language is Simulink®. Models in a
CBD language consist of blocks with inputs and outputs.
Connections between these blocks carry a signal, which the
blocks manipulate. The types of blocks include simple alge-
braic operator blocks, such as addition blocks, but also more
advanced blocks, such as integration blocks, which operate on
entire signals (functions of time).

The remainder of this paper is organized as follows. Sec-
tion II presents the necessary background on model syntax and
our Multi-Paradigm Modelling approach to it, which is used
extensively throughout this paper. Section III and Section IV
elaborate on screensharing and modelsharing, respectively, and
presents how this is facilitated by our framework. Section V
presents the unification of both screensharing and modelshar-
ing and discusses the advantages. Section VI explores related
work and Section VII concludes the paper.

II. BACKGROUND

This paper heavily relies on language engineering concepts.
To ensure that this terminology is clear, be briefly recap
these terms here. Subsequently, we briefly present our concrete
syntax framework, forming the foundation of our approach.



A. Modelling Syntax

Modelling languages in general are defined by their abstract
and concrete syntax [13], [14]. The abstract syntax defines the
concepts of a language and how they may be combined. These
concepts can be instantiated and used as the building blocks
of models (the sentences in the language). For example, the
abstract syntax of CBDs defines concepts such as Addition,
Constant, and Signal. The concrete syntax defines the visu-
alization, or rendering, of these abstract syntax concepts. For
example, the concrete syntax of CBDs defines the mapping of
a Constant to a circle with the name of the constant its value.

A modelling formalism additionally has a notion of seman-
tics, describing the meaning of sentences in the language.
Semantics is given by providing both a semantic domain
and a semantic mapping function. The semantic domain is
language, for which semantics is assumed known, to which all
sentences in the original language are mapped. For example,
the semantic domain of CBDs can be, for each signal in the
CBD, a Real function of the Real time base, representing the
values of the signals over time. The semantic mapping spec-
ifies how elements of the language are mapped to instances
in the semantic domain. For example, a semantic mapping of
CBDs can be given in the form of an operational simulation
specification.

In the remainder of this paper, we will mostly concern
ourselves with the language aspect: abstract and concrete
syntax. Indeed, we only consider collaboration in modelling,
which might even occur on models in languages that have no
behavioural semantics, such as UML Class Diagrams.

B. Multi-Paradigm Modelling Approach to Concrete Syntax

Previous work [9] introduced an MPM approach to con-
crete syntax, addressing the limitations of existing modelling
language engineering approaches to concrete syntax. Other
approaches had limited portability (e.g., only a single front-
end exists), limited perceptualization (e.g., only visual repre-
sentation), limited mappings (e.g., only a single type of visu-
alization), limited lay-outing possibilities (e.g., only general-
purpose lay-out), and limited definitions (e.g., only a single
“icon” for an abstract syntax concept). These are especially
limiting in the context of Multi-Paradigm Modelling, which
proposes to model all relevant aspects of a system at the most
appropriate level(s) of abstraction, using the most appropriate
formalism(s), while explicitly modelling the process.

To circumvent these restrictions, we defined an MPM frame-
work for concrete syntax in which all aspects of concrete
syntax are modelled explicitly. The concrete syntax language
is modelled explicitly, defining concepts such as a rectangle
and a circle. Perceptualization of models can then also be
modelled explicitly through the use of activities, mapping
from the language directly to the concrete syntax language.
The concrete syntax language is then used as a description
of the data format exchanged with the front-end. The front-
end is what the user interacts with. Instances of this concrete
syntax language can then directly be exchanged with any type
of conforming front-end. Essentially all perceptualization is

MMAS MMRender

MAS MRender

MMCL

comprehend

perceptualize

BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
ConnectionMMRender

MRender
transfer render

recognize

implements

platform

Fig. 1: Overview of the approach, taken from [9].

handled in the back-end, instead of the front-end: the front-
end never directly accesses the abstract syntax of the model.
The front-end then maps the concepts of the data format
(e.g., Rectangle) to equivalent operations on the platform (e.g.,
create_rectangle(...) in TkInter).

Figure 1 presents this framework. MMRender denotes the
concrete syntax metamodel, present in the back-end (as an
explicit model) and the front-end (possibly hardcoded and
only implicitly accessible, through an API). Perceptualiza-
tion happens entirely in the back-end, where an MRender is
constructed, describing how MAS is presented. This MRender,
for example, defines where to put rectangles and circles, and
is completely unrelated to the CBD domain. Any front-end
that has knowledge of the same MMRender (e.g., with concepts
such as Rectangle and Circle) can then visualize this model
effortlessly. The visual MMRender described above is only an
example, and could just as well be for sound or text concrete
syntaxes.

III. SCREEN SHARING

The first type of collaboration considered is termed “screen
sharing”. As the name suggests, it seems to users as if they
are sharing the same screen or canvas. That is, users share
the same concrete syntax rendering of the model, including
details of the visualization that are not present in the abstract
syntax such as the visual location of elements. For example,
with CBDs, users performing screen sharing see the exact
same visualization, and even dragging visual elements is
immediately reflected in all users’ views.

This type of collaboration is useful if there is a close
interaction between different modellers. An example is “pair
modelling”, where multiple users are simultaneously reasoning
about the model and its construction. In this case, all types
of changes are considered to be relevant as the placement of
elements can already be indicative of modelling intentions. In
essence, all concrete syntax changes are always propagated,
meaning that models are shared at the concrete syntax level.

In our concrete syntax framework, this indicates that mul-
tiple users share the same MRender model. As this is the
perceptualized representation of the model, shared information
includes concrete syntax concepts, such as concrete syntax
element coordinates. Note that users do not directly share the
abstract syntax, but instead share a perceptualization of it.
While changes to the concrete syntax can still have an impact



MMAS MMRender

MAS MRender

MMCL
BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
ConnectionMMRender

MRender
transfer render

recognize

implements

MMRender

MRender

transfer

render

recognize

implements

<<AS operations>>

platform1

platform2

comprehend

perceptualize

Fig. 2: Screenshare in our concrete syntax framework.

on abstract syntax, and vice versa, screensharing assumes that
sufficient information is present in the concrete syntax.

This is shown in Figure 2, where two interfaces, one for
each collaborating user, use the same MRender. At the right, we
see two front-ends, which might be different implementations
on entirely different software and hardware platforms. The
only restriction is that they share the same MMRender, such
that they are able to understand the same visualization, making
screenshare possible. Both interfaces have their own copy of
MRender, which they synchronize through the back-end, imme-
diately propagating changes. These three versions of MRender

are kept synchronized, and conflicts are resolved, through the
use of existing techniques. Since both front-ends are merely
visualizers of the MRender, this guarantees that all front-ends
present the exact same information. Any change on MRender

can have an impact on the abstract syntax model MAS as
well. Therefore, all changes are comprehended and potentially
result in changes to the abstract syntax model, in turn causing
a new perceptualization. For example, dragging an element
inside of another element is a concrete syntax operation. It is
however comprehended as an abstract syntax operation as well,
where a containment link is created between both elements.
Subsequently, perceptualization might require the container
to be enlarged to completely contain the containee, thereby
updating MRender again. After the new MRender is generated, it
is propagated to all front-ends.

Our framework therefore natively handles screensharing, as
this is collaboration on the model MRender.

IV. MODEL SHARING

The second type of collaboration considered, is termed
“model sharing”. As the name suggests, users share the same
model, but not to the same extent as screen sharing. That
is, users share the same model, but might have different
visualizations of that model. This resembles multiple views on
a single model. For example, with CBDs, users that perform
model sharing operate on the same CBD model, but may have
different visualizations (e.g., different model “icons”, different
perceptualization formats, or just different element locations).
Their visualizations are independent of one another. That is,

even if they have the same visualization method, the visualized
artefacts are different, meaning that concrete syntax operations
such as dragging are not replicated, unless these operations
also have an effect on abstract syntax.

This type of collaboration is useful if multiple users wish
to collaborate, but have different backgrounds or preferences.
For example, some users might prefer a model textual notation,
while other users prefer a visual one. Neither is vastly superior
to the other, and they both have their use [15]. Note that
this approach can also be used outside of the context of
collaboration, where a single user opens multiple editors on the
same model. For example, a music composition model can be
visualized using standard musical symbols, in a musical score,
but can also be sonified, where the composition is played for
the user. While this is not technically sharing, as only a single
user is involved, there are multiple views on the same model.

This approach is also useful for performance improvements
with many collaborating users. Indeed, screen sharing pushes
many (small) changes in all directions: every drag operation
is repeated by all connected clients. And while this can be
beneficial to know what people are working on, it can easily
turn into a performance bottleneck. Cognitively, users might
become distracted by the changes made by all other users.
Sharing only the abstract syntax changes reduces the amount
of exchanged data and additionally limits the changes that
happen concurrently on the same screen.

In our concrete syntax framework, multiple users share
the same MAS model, although they have different MRender

models, possibly even conforming to different metamodels
MMRender. As this is the unperceptualized model, only the
abstract syntax model is shared. Changes still happen through
the concrete syntax, but now there is no collaboration at
that level anymore: the MRender is specific to the user. Only
when changes are comprehended to changes on the MAS ,
actual collaboration occurs. Collaboration therefore happens
on the MAS model, although indirectly: users do not directly
modify this model. This is similar to views, where users
modify elements in their view, instead of directly modifying
the underlying abstract syntax.

As was the case with screensharing, this framework is or-
thogonal to conflict resolution, relying on existing algorithms.
Modelsharing implies collaboration at the level of the MAS ,
where conflicts must be solved at that level. In contrast to
screensharing, edit operations on MAS come from a model
transformation, although this has no influence.

This is shown in Figure 3, where two interfaces, one for
each collaborating user, use the same MAS . At the right side,
we see the two different front-ends, which in this case even
have a different MMRender. In our example, they visualize the
model in different ways: one uses a symbol-based visualization
of the CBD trace, while the other uses a plot-based visualiza-
tion of this exact same trace.

As was the case with screensharing, all changes on MRender

can potentially result in changes to MAS as well. When MAS

is modified, these changes must now not only be perceptu-
alized to the MRender that caused the change, but should be



MMAS

MMCL
BACK-END

<<AS operations>>

FRONT-END

Add
Block

Add
Connection

MRenderMAS MRender
transfer render

recognize

implements

MRender

render

recognize

implements

MRender
transfer

MMRender
Graph MMRender

Graph

Graph Graph

Plot Plot

PlotPlotMMRender MMRender

(t0; v0)

(t1; v1)

(t2; v2)

platform1

platform2

comprehend

perceptualize

com
prehend

perceptualize

Fig. 3: Modelshare in our concrete syntax framework.

pushed to all perceptualized models. As such, changes to one
MRender can result in changes to other MRender models. Since
the changes are coordinated by the MAS and perceptualized
with specific activities, all of this can happen transparently to
the users. To the users of the other MRender, the change will
simply be as if someone directly altered their concrete syntax.

Our framework therefore natively handles modelsharing, as
this is collaboration on the model MAS . Note that screen-
sharing automatically implies that modelsharing is also being
done, as the same changes on concrete syntax will result in
the same changes in abstract syntax.

V. UNIFICATION

We have indicated how both screensharing and modelshar-
ing can be implemented through the use of our explicitly
modelled framework for concrete syntax. Both approaches
have already been implemented in tools such as AToMPM [1].
Our approach has additional benefits, however, which are
thanks to its unifying nature. As our approach mostly reuses
the existing concrete syntax framework for its operation, an
implementation doesn’t have to start from scratch.

A. No Sharing

Up to now, we have not yet mentioned how modellers
would go about not collaborating. Indeed, while we unify two
approaches to collaboration, our approach is also applicable
when there is no sharing at all. Instead of sharing at the
concrete syntax or the abstract syntax level, users then first
create a copy of MAS , on which they then operate. As they
do not collaborate on the same model, this causes a divergence,
which could later on be resolved with techniques such as
model versioning [4] or model merging [16]. Both techniques
also allow one to deal efficiently with the seemingly inefficient
model copying. Since this is not related to collaboration in
modelling, we do not elaborate on this topic.

An overview of our framework, this time without sharing,
is shown in Figure 4. In this case, the abstract syntax model
was duplicated, or “forked”, to ensure that no changes are
propagated between different users. Whatever changes are
made by one user, nothing will change for the other users.

MMAS

MMCL
BACK-END FRONT-END

Add
Block

Add
Connection

MRender

 

MAS MRender
transfer render

recognize

implements

MRender

render

recognize

implements

MRender
transfer

MMRender
Graph MMRender

Graph

Graph Graph

Plot Plot

PlotPlotMMRender MMRender

(t0; v0)

(t1; v1)

(t2; v2)

platform1

platform2

M'AS

comprehend

perceptualize

comprehend

perceptualize

fork

Fig. 4: Overview of no sharing of the same model, requiring
a fork of the abstract syntax model.

B. Combining Types of Sharing

With these three types of sharing unified, the next logical
step is to allow combinations simultaneously. For example,
some users might be model sharing, whereas other users
are screen sharing, and some might be working on different
versions of the abstract syntax model.

This is shown in Figure 5, where there are seven users
that are (partially) collaborating. In this case, there are two
versions of the abstract syntax model, between which there
is no collaboration. There might be future collaboration due
to potential model merges or through the use of model
versioning. Users A, B, and C collaborate on the same model
MAS , and users D, E, F, and G collaborate on another model
M ′

AS , a forked version of MAS . At the next level, there is
sharing of the abstract syntax between these users within their
group, meaning they perform model sharing with one another.
In one branch, users A, B, and C perform model sharing, and
in the other users D, E, F, and G perform model sharing as
well. Additionally, some users have a stronger form of sharing
between them: screensharing. Indeed, users A and B share the
same concrete syntax as well, and are thus using screensharing.
Similarly, users D, E, and F use screensharing as well.

As a result, there are different levels of sharing and change
propagation, as shown in Figure 6. First, we note two types
of groups: there are screenshare groups (green: w, x, y,
and z) and modelshare groups (red: u and v). Note hat a
screenshare implies a modelshare, as this includes all the
same, and some more changes that are to be propagated.
Following the overview in Figure 5, we see the various groups
of collaboration. Using a CBD model as an example, we show
exactly the same model for each client. Although the model is
semantically (and in abstract syntax) exactly the same, the four
screensharing collaborations each have different visualizations:
group w uses the previously introduced notation; group x has
a different location of the elements; group y uses a Σ instead
of a + symbol; and group z uses a grayscale notation.

If user A makes a modification α, where the constant block
is dragged slightly to the right, this change is propagated to the



FRONT-END

MAS
transferMRender

1

comprehend

perceptualize

com
prehend

perceptualize

MRender

render

recognize
1

platformI

A

MRender

render

recognize
1

platformII

B
render

recognize
MRender

2

platformIII

C

MRender

render

recognize
3

platformIV

D

MRender

render

recognize
3

platformV

E

MRender

render

recognize
3

platformVI

F

MRender

render

recognize
4

platformVII

G

transfer

MRender
2 transfer

BACK-END

M'AS
transferMRender

3

comprehend

perceptualize

com
prehend

perceptualize

transfer

MRender
4 transfer

transfer

fork

Fig. 5: Collaboration at different levels for seven users.

A

B

C

D

E

F

G

{

{

x

y

z

w

v

u

α

β

+
1

x

+
1

x

Σ
1

x

Σ
1

x

Σ
1

x

+
1

x

+
1

x

Σ
1

x

Σ
1

x

Σ
1

x

+
1

x

Σ
1

x

Σ
1

x

Σ
1

x

+
1

x

+
1

x

+
1

x

+
1

x

+
1

x

+
1

x

+
1

x*

*

*

*

*

Fig. 6: Different degrees of change propagation, depending on
the type of collaboration.

other users. Since the comprehension phase ignores changes
to the location of blocks, the changes are limited to MRender.
As such, the change is only noticed by the users in the same
screencast collaboration (group w), more specifically users A
and B. This is then shown in the next column, where both
users have a modified representation of the model, while all
other users have their representation untouched.

Afterwards user B makes a modification β, deleting the link
from the constant block to the addition block. This change has
an effect on the concrete syntax model (i.e., the link is not
drawn anymore), but is also comprehended as a change on
the abstract syntax model MAS (i.e., the association of type
Link is removed). This change is propagated to all users in the
same modelshare group (u), more specifically to users A, B,
and C. While this was normal for user A (using screenshare)
and user B (initiating the modification), also user C sees a
modification. The modification at user C happens due to the
removal at MAS , which causes perceptualization to happen
again, thereby altering the concrete syntax of user C. Users in
modelshare group v have forked from MAS to M ′

AS and are
therefore not notified of the changes to the abstract syntax.

Removals are often easier to process than additions. In the

case of an addition, the element is added in abstract syntax,
but there is no information on where to put the element. This
information was there for the screenshare users, namely the
location of the mouse click, but this information cannot be
used with modelsharing. As such, perceptualization has to add
information to come up with a location. This can depend on
the specific modelling domain.

Another situation, not shown, is where user A performs a
concrete syntax change, such as dragging an element inside
another element. User A and B immediately see the change in
concrete syntax (the dragging), but comprehension indicates
that a new association be created between the container and
containee. After the next phase of perceptualization, this
abstract syntax change is also propagated to the concrete
syntax of user C, meaning that in this case a concrete syntax
change resulted in concrete syntax changes for users that are
only model sharing. Again, users in a different modelshare
group are not notified of the changes.

These three different scenario’s highlight that our approach
transparently handles different users and various combinations
of screensharing, modelsharing, and no sharing at all.

VI. RELATED WORK

The terminology used in this paper is based on the two types
of collaboration provided by AToMPM [1], a collaborative
web-based meta-modelling environment. AToMPM provided
both modelshare and screenshare, although this was not uni-
fied, as presented here. Additionally, this earlier work was
purely an implementation feature, and certainly not explicitly
modelled as presented in this paper. The way in which opera-
tions are executed is also different: whereas in our framework
it is possible to start screensharing or modelsharing with any
accessible model (i.e., taking into account access control),
AToMPM actually required the owning user to invite other
users for modelsharing or screensharing.

Several other collaborative tools exist, each with their own
distinct approach to collaboration. Mostly, however, tools
support either screensharing or modelsharing. Screensharing,
sometimes termed whiteboarding [3], is supported by several
tools and is a popular model collaboration approach. For
example, WebGME [5] and a tool by Gallardo et al. [3]
support screensharing, as each user can see the same change
immediately. Modelsharing is similar to multi-view mod-
elling [17], where different visualizations of the same model
are manipulated concurrently. Each view can be considered as
having a different type of visualization, or concrete syntax.

Another type of collaboration is achieved through model
repositories, such as MDEForge [18]. While they support a
browsable repository of models, where modifications can be
made on models, they do not consider the split between ab-
stract and concrete syntax as deeply as in our work. MDEForge
is primarily focussed on reusing existing models (as a model
repository) and performing model management operations on
them (e.g., through model transformations [19]). Although a
programmatic interface exists, to the best of our knowledge,
the tool does not focus on the model editing part.



Orthogonal to our approach are different techniques to
actually make collaboration work in a safe way. That is,
to define strategies for when conflicting changes occur. One
such strategy, as implemented by WebGME [5], is to branch
off from the model when changes are made. This relies on
model versioning, where each modification is stored explicitly
and creates a new branch starting from the original model.
This impedes collaboration, as users enter different branches
and later have to perform model merging to resolve potential
conflicts. Another strategy is to use locking, as implemented
by Gallardo et al. [3], where users can request permission to
modify the model. Only a single user can modify the model
at the same time, thereby preventing conflicting operations.
All these approaches are orthogonal to our approach, as
we consider the level at which sharing happens, and where
we actually perform the collaboration. For example, when
modelsharing, the collaboration happens at the level of MAS ,
which is where these other techniques come into the picture.

Related work on the concrete syntax framework, particularly
to projectional editing [20], was presented elsewhere [9].

VII. CONCLUSION

The complexity of engineered systems is ever increasing,
resulting in a plethora of larger and more diverse models.
This increase in complexity can be addressed by collaborative
model development, also known as Concurrent Engineering.
We distinguished two types of collaboration, depending on
which artefacts are shared between users: screenshare and
modelshare. With screenshare, different modellers share the
exact same representation of the model, including, for ex-
ample, the location of elements. With modelshare, different
modellers share the same model, but have different views
(or visualizations) on this model. We implemented both ap-
proaches based on our framework for concrete syntax, thereby
enabling the unification of both approaches and reusing several
operations. Since both are unified, it is possible to combine
these approaches, such that different combinations of screen-
sharing and modelsharing become possible.

In future work, a compromise between modelshare and
screenshare could be made, where only “relevant” concrete
syntax operations are shared. For example, if the size of
elements is relevant, these should still be propagated, while
location information should not. Another direction of future
work is the extension of this modelling environment to a
simulation and debugging environment, for example using
existing techniques [21]. The future work of our concrete syn-
tax framework is also applicable in this context, in particular
the use of an interaction model [9], which can interact with
resolution strategies (e.g., locking).

ACKNOWLEDGEMENTS

This work was partly funded by a PhD fellowship from
the Research Foundation - Flanders (FWO). This research
was also partially supported by Flanders Make vzw, Flanders’
strategic research centre for the manufacturing industry.

REFERENCES

[1] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo,
and H. Ergin, “AToMPM: A web-based modeling environment,” in
Proceedings of MoDELS’13 Demonstration Session, 2013, pp. 21–25.

[2] C. Debreceni, G. Bergmann, I. Ráth, and D. Varró, “Property-based
locking in collaborative modeling,” in Proc. MoDELS, 2017, pp. 199–
209.

[3] J. Gallardo, C. Bravo, and M. Redondo, “A model-driven development
method for collaborative modeling tools,” Journal of Network and
Computer Applications, vol. 35, pp. 1086–1105, 2012.

[4] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer,
“An introduction to model versioning,” in Formal Methods for Model-
Driven Engineering - International School on Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM),
2012, pp. 336 – 398.

[5] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,
T. Levendovszky, and A. Lédeczi, “Next generation (meta)modeling:
web- and cloud-based collaborative tool infrastructure,” in Proceedings
of the Workshop on MPM, 2014, pp. 41 – 60.

[6] M. Gerosa, M. Pimentel, H. Fuks, and C. de Lucena, “Towards an
engineering approach for groupware development: learning from the
AulaNet LMS development,” in Proceedings of the 9th International
Conference on CSCW in Design, 2005, pp. 329–333.

[7] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: Some issues and
experiences,” Commun. ACM, vol. 34, no. 1, pp. 39–58, 1991.

[8] S.-L. Beatteay, N. Savant, and E. Olivares, “Building Conclave:
a decentralized real-time, collaborative text editor,” 2018,
https://hackernoon.com/building-conclave-a-decentralized-real-time-
collaborative-text-editor-a6ab438fe79f.

[9] Y. Van Tendeloo, S. Van Mierlo, B. Meyers, and H. Vangheluwe,
“Concrete syntax: A multi-paradigm modelling approach,” in Proc. SLE.
ACM, Oct. 2017, pp. 182 – 193.

[10] P. J. Mosterman and H. Vangheluwe, “Computer automated multi-
paradigm modeling: An introduction,” SIMULATION, vol. 80, no. 9,
pp. 433–450, 2004.

[11] H. Vangheluwe, J. de Lara, and P. J. Mosterman, “An introduction
to Multi-Paradigm Modelling and Simulation,” in Proceedings of the
AIS’2002 Conference (AI, Simulation and Planning in High Autonomy
Systems), 2002, pp. 9 – 20.

[12] Y. Van Tendeloo and H. Vangheluwe, “The Modelverse: a tool for multi-
paradigm modelling and simulation,” in Proceedings of the 2017 Winter
Simulation Conference. IEEE, Dec. 2017, pp. 944 – 955.

[13] A. Kleppe, “A language description is more than a metamodel,” in Fourth
International Workshop on Software Language Engineering, 2007.

[14] S. Van Mierlo, Y. Van Tendeloo, B. Meyers, and H. Vangheluwe,
“Domain-specific modelling for human-computer interaction,” in The
Handbook of Formal Methods in Human-Computer Interaction.
Springer, 2017.

[15] M. Petre, “Why looking isn’t always seeing: Readership skills and
graphical programming,” CACM, vol. 38, no. 6, pp. 33–44, 1995.

[16] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sa-
betzadeh, “A manifesto for model merging,” in Proceedings of the 2006
International Workshop on Global Integrated Model Management, ser.
GaMMa ’06. New York, NY, USA: ACM, 2006, pp. 5–12.

[17] International Organization for Standardization, “ISO/IEC/IEEE
42010:2011, systems and software engineering — architecture
description,” 2017, https://www.iso.org/standard/50508.html.

[18] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and
A. Pierantonio, “MDEForge: an extensible web-based modeling plat-
form,” in Proceedings of the Workshop on Model-Driven Engineering
on and for the Cloud (CloudMDE), 2014, pp. 66 – 75.

[19] J. Di Rucco, D. Di Ruscio, A. Pierantoini, J. Sánchez Cuadrado,
J. de Lara, and E. Guerra, “Using ATL transformation services in
the MDEForge collaborative modeling platform,” in Proceedings of the
International Conference on Model Transformation (ICMT), 2016.

[20] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards user-friendly
projectional editors,” in Proceedings of the International Conference on
Software Language Engineering, 2014, pp. 41–61.

[21] S. Van Mierlo, “A multi-paradigm modelling approach for engineer-
ing model debugging environments,” Ph.D. dissertation, University of
Antwerp, 2018.


