
In Algorithm 1, the linguistic conformance check of the MvK is
shown. It checks whether a given model conforms to a given type
model. It consists of four checks:

1. (Lines 1-7) Checks whether all elements in the model are typed
by an element in the type model. Functions used are:

(a) populate types : returns a mapping between types of the type
model, and instances of those type in the model.

(b) type: returns the type of an element.

2. (Lines 8-14) Checks whether the minimum and maximum cardi-
nality for each type in the type model is satisfied. Functions used
are:

(a) get mimimum: returns the minimum cardinality for an given
type.

(b) get maximum: returns the maximum cardinality for an given
type.

3. (Lines 15-24) Checks, for all attributes of all elements in the
model, whether a type definition for the attribute can be found
in the type model (lines 17-19), and whether the type of the
attribute value corresponds to the type defined in the attribute
type (lines 20-22). Functions used are:

(a) get attributes : returns all attributes of an element.
(b) get value: returns the value of an attribute.
(c) get type: returns the type of the values which can be assigned

to an attribute.

4. (Lines 25-49) Checks, for each incoming and outgoing association
of each element of the model, whether, respectively, the incoming
and outgoing cardinalities are satisfied. Also checks whether the
types of the connected elements correspond to those defined in
the association. Functions used are:

(a) classify by type: classifies the given elements by their type,
and returns a mapping between types and instances.

(b) get out associations : returns all outgoing associations of an
element.

(c) get in associations : returns all incoming associations of an el-
ement.

(d) get minimum out : returns the minimum number of outgoing
associations of a particular type.

1



Algorithm 1 The MvK’s linguistic conformance check.
Input: model, type model
1: type to elements← populate types(model, type model)
2: for el in model do
3: if not type(el) in type to elements then
4: return False
5: end if
6: append el to type to elements[type(el)]
7: end for
8: for type in type to elements do
9: if len(type to elements[type]) < get minimum(type) then
10: return False
11: end if
12: if len(type to elements[type]) > get maximum(type) then
13: return False
14: end if
15: for el in type to elements[type] do
16: for attr in get attributes(el) do
17: if not type(attr) in get attributes(type) then
18: return False
19: end if
20: if not type(get value(attr)) = get type(type(attr)) then
21: return False
22: end if
23: end for
24: end for
25: out associations← classify by type(get out associations(el))
26: for assoc type in out associations do
27: if not(get in type(assoc type) in get all types(el)) then
28: return False
29: end if
30: if len(out associations[assoc type]) < get minimum out(assoc type) then
31: return False
32: end if
33: if len(out associations[assoc type]) > get maximum out(assoc type) then
34: return False
35: end if
36: end for
37: in associations← classify by type(get in associations(el))
38: for assoc type in in associations do
39: if not(get out type(assoc type) in get all types(el)) then
40: return False
41: end if
42: if len(in associations[assoc type]) < get minimum in(assoc type) then
43: return False
44: end if
45: if len(in associations[assoc type]) > get maximum in(assoc type) then
46: return False
47: end if
48: end for
49: end for
50: return True 2



(e) get maximum out : returns the maximum number of outgoing
associations of a particular type.

(f) get minimum in: returns the minimum number of incoming
associations of a particular type.

(g) get maximum in: returns the maximum number of incoming
associations of a particular type.

(h) get out type: returns the type defined for the outgoing multi-
plicity of an association.

(i) get in type: returns the type defined for the incoming multi-
plicity of an association.

(j) get all types : returns the type of the element, as well as all its
subtypes.

3


