
Assignment 4
Production System Translational Semantics in

AToMPM
Bentley James Oakes

1 Practical Information
The goal of this assignment is to build a rule-based transformation for executing
the translational semantics of the production system modelling language in the
visual modelling tool AToMPM.

The different parts of this assignment:

1. Build a transformation to generate a Petri net alongside the production
system model, connected by traceability links.

2. Build a transformation which executes the Petri net and simultaneously
visually updates the production system model.

3. Create two production system models that are representative for all the
features in your language. Show a few steps of the execution of these
transformations for these models, and create a short video for one.

4. Write a report that includes a clear explanation of your complete solution
and the modelling choices you made.

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf, commented syntax
and semantics models, and example models) on Blackboard before Tuesday,
November 24th, 23:59h. Contact Bentley Oakes (bentley.oakes@uantwerpen.be)
if you have any issues.

2 Requirements
This section lists the requirements of the production system translation seman-
tics transformations and the report. Make sure to test each requirement with
test models!

1



2.1 Petri Net Generation
Implement a rule-based transformation that generates a well-formed Petri net
modelfrom a production system model.

• Ensure that this transformation is complete. That is, a well-formed pro-
duction system will produce a well-formed Petri net.

• The Petri Net formalism you use should be (or be based on) the /Formalisms/PN
formalism. Feel free to create your own version by extending the original
to add positioning, snapping, as needed. Don’t forget to hand in your
custom Petri Net formalism as well.

• Do not remove your production system during this transformation. It is
instead left untouched, and Places, Transitions, and arcs created for each
element in the Petri net.

– Note that inhibitor arcs cannot be used! This is due to the analysis
tool in the next assignment.

• Note that Places and Transitions must be uniquely named in the Petri
net model. This is to allow for the analysis in the next assignment.

• Traceability links must be created from the production system element
and the created Places and Transitions, such that the transformation in
Section 2.2 can operate on both models.

• Simplifications:

– Assume that there are a maximum of two operators present in the
production system.

– Assume that operators stay a maximum of one step at every machine.
– Assume all possibilities of the Inspection machine have equal weight.

That is, do not model the probabilities.
– Layout considerations do not have to be considered in this transfor-

mation. That is, you may assume that the user will manually move
Petri net elements to an appropriate location as they are created.

• Warning: There is a bug in AToMPM where the action code on the PtoT
or TtoP associations in the Petri Net formalism is not reset to result
= True or result = getAttr() when it is placed in the LHS, RHS, or
NAC. You will have to manually change the action code for all these
created associations. Apologies for the inconvenience.

– Note that an exception has been added to the transformation server,
such that a transformation cannot be loaded with rules with any
unreset action code. Otherwise, rules would silently fail.

• Figure 1 shows the schedule for a production system and the generated
Petri net.

2



2.2 Executing the Petri Net
Implement a rule-based transformation that executes the Petri net, and simul-
taneously visually updates the production system model.

• Base this transformation on the ones in the /Formalisms/PN folder.

• This basic Petri Net execution transformation detects transitions, places
a pivot on the transition to fire, consumes attached tokens, and then
produces tokens.

• Create your own version by adding rules which match on the transition
to fire (using the pivot), and performs the visual update of the connected
production system elements.

– One way to select the rule to fire could be through an encoding
scheme on the Transition name.

– Example: The R CubeArrival rule has a pattern which matches on
the ending token of the T Cubearr CubeArrival transition. In this
way, the transition “type” indicates which production system ele-
ments should be updated.

• Run-time info (items accepted, number of timesteps, operators having
moved, etc.) must be represented in the Petri net by Places. These will
be used in the following assignment for analysis.

• Simplifications:

– If needed, you may allow items to move multiple times in a time-step.
Operators must still only move once per time-step.

• As a heads-up, in the next assignment the order of transition firings will
be specified. This will be done through a string containing the list of
transitions to fire in the model, similar to the token parsing in the FSA
example. Therefore, ensure that your solution can be extended to handle
this.

3 Report
There are a number of requirements for the report. Above all, the marker
must be able to read the report and have a clear understanding of all
aspects of the assignment, without having to investigate the model
files.

Specifically, the report must contain:

• A brief outline of how the rules, transformations, and example models
meet the requirements of the assignment

• A discussion of any interesting decisions made.

3



• A discussion of possible improvements to the rules and transformation
syntax.

• Two example production systems.

• For each production system, show:

– Diagrams of at least a few steps of the production system during the
generation and execution transformations. Highlight the items being
assembled, destroyed, fixed, etc. and explain the behaviours you are
showing.

– These diagrams and your explanations must convince the reader that
your transformation implements the translational semantics.

– Note that (textual) traces are not required for this assignment, as
the visual representation of the production system should show the
desired behaviour.

• Choose one production system and produce a short screen recording of
the Petri net execution transformation running and showing interesting
behaviour.

– This video should be uploaded to YouTube and the link placed in the
report. Note that it should be unlisted, so it cannot be found except
for the link.

– A short description should be provided below the video, but no cap-
tions/voiceover/editing is required.

4 Useful Links and Tips
• AToMPM main page: https://atompm.github.io/

• Download and code: https://github.com/AToMPM/atompm

• Documentation: https://atompm.readthedocs.io/en/latest/

Acknowledgements

Based on an earlier assignment by Simon Van Mierlo.
Icon authors from www.flaticon.com:

• Cylinder - https://www.flaticon.com/authors/kiranshastry

• Cube - https://www.flaticon.com/authors/smashicons

• Belts, Machine, Inspector, Incinerator, Receiver - https://www.flaticon.
com/authors/freepik

• Arrival Machine - https://www.flaticon.com/authors/catalin-fertu

• Fixer - https://www.flaticon.com/authors/srip

4



Figure 1: An example of a schedule and the created Petri Net.

5


