Assignment 2
Production System Modelling in AToMPM

Bentley James Oakes

Updated October 16th.

1 Practical Information

The goal of this assignment is to design a domain-specific modelling language
(formalism) and subsequently to model production systems (a factory) in that
language in the visual modelling tool AToMPM.

The different parts of this assignment:

1. Implement the abstract syntax of your language in AToMPM.

e The formalism used will be
/Formalisms/LanguageSyntax/SimpleClassDiagram

2. Enrich the abstract syntax with constraints so that you can check that
every model is well-formed.

3. Create a concrete syntax, and generate a modelling environment by com-
piling the metamodel and the concrete syntax model. Do this incremen-
tally.

e The formalism for this part will be
/Formalisms/LanguageSyntax/ConcreteSyntax

4. Create some production system models that are representative for all the
features in your language. The requirements for two valid models are
specified below, and there should be a third invalid model to show that
your constraints detect invalid models.

5. Write a report that includes a clear explanation of your complete solution
and the modelling choices you made.

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf, commented abstract and
concrete syntax models, and example models) on Blackboard before Thursday,
October 22nd, 23:59h. Contact Bentley Oakes (bentley.oakesQuantwerpen.be)
if you have any issues.

2 Requirements

This section lists the requirements of the production system domain-specific
language and the report. The language requirements are split into two sections:
one on abstract syntax, and one on concrete syntax. Make sure to test each
requirement with test models!

2.1 Abstract Syntax

There are no modifications in this section from Assignment 1.
The abstract syntax of the DSL captures its syntar and static semantics.
The requirements for the abstract syntax are:

1. A production system consists of the infrastructure with conveyor belts
running between machines. Workers operate the machines while items
are transferred on the belts. Items are processed and are either assigned
by a quality check to be accepted, rejected, or fized.

2. The belt network consists of a number of interconnected belt segments.
The language must support the following segments:

e Straight - A trivial belt segment which allows an item to move
straight. Has one incoming and one outgoing segment.

e Split - Allows an item to go straight, or to split off onto another
belt. Has one incoming segment and two outgoing segments.

e Join - Joins two segments. Has two incoming segments and one
outgoing segment.

e Machine - Similar to Straights, but can also be at the beginning or
end of a belt. Depending on type has zero or one incoming segments
and zero, one, or three outgoing segments, but is always connected
to at least one segment.

— Each Machine has a unique name, consisting of a single upper
case letter, followed by zero or more lower case letters, ending
with zero or more numbers.

3. Although this will not be allowed at run-time, the language should support
more than one item to be present on a belt segment at a time.

4. There are two types of Items in this production system: Cylinders and
Cubes. An Item must be on only exactly one segment.

5. There are a number of Machines which exist in this production system

e Arrival - The Arrival Machine produces either Cylinders or Cubes.
Items are produced when the Machine is operated.

Assembly - The Assembly Machine is actually two linked Machines.
One for the Cylinders and one for the Cubes. These Machines are
different segments, and are linked by a bi-directional association. An
Assembly Machine handling Cubes must be linked to exactly one
Assembly Machine handling Cylinders (and the reverse of course).
The output of an Assembly Machine is an Assembledltem, which is
itself an Item.

Inspection - The Inspection Machine inspects the Item (including
AssembledItem), and determines whether the Item is to be accepted,
fixed, or destroyed.

— An Inspection Machine is still a type of Segment, but it must
also have one output belt for the Items to fix, and one output
belt for the Items to destroy.

Receiver - The Receiver Machine takes any incoming Items off the
belt, for further processing.

Fizer - The Fizer Machine attempts to repair any defects in the
Item.

Incinerator - The Incinerator destroys the Item on the belt.

6. Each of these Machines requires an Operator to operate. Operators have
a name'. Each Machine can have at most one Operator be present, and
the Operator must be present for the Machine to function.

7. These Operators also need a schedule, which will be defined in a second
domain-specific language. This is so that each operator can have a differ-
ent schedule in the production system. The requirements for this second
language are:

A schedule is associated to an Operator by referring to the name of
the Operator. Each Operator must have a schedule, and a schedule
must have an Operator.

The schedule of an Operator tells them which Machines to operate,
and for how many time steps. The Operator will start at the first
Machine in the list, and operate them in order until the end of the
list in which case the schedule will repeat. There must be at least
one step where a machine is operated in each schedule.

Whenever the operator moves between two different machines (in-
cluding when the schedule is repeated), there must be a step (of
duration one) which represents the movement of the worker within
the physical space. During this movement step, that operator will
not operate any Machine.

LAnd hopes, dreams, fears, and rich social lives. But these qualities won’t be modelled
here, only their name.

2.2 Concrete Syntax

Notations in production systems modelling are not standardized. Therefore
you will have a lot of freedom coming up with your own notation. The only
requirements are that:

¢ Your notation does not need to be beautiful, but it must be clear and
understandable.

e The license for downloaded images must be respected. For example,
flaticon.com requires textual attribution which can be placed in your
report.

Figure 1 shows an example production system from the first assignment,
and one representation of it. Note that your solution should be somewhat more
clear than this.

As well, the actions, mappers, and parsers of AToMPM must be used to
improve the user experience of modelling the production system:

o Display the percentage chance of acceptance, rework, and failure on in-
spection machines, controlled with attributes on the machine instance.

« Display other useful information as you see fit (such as the name of ma-
chines and operators).

e Model an action that automatically “snaps” a segment when it is con-
nected to another segment.

— As in, when two segments are connected, one moves directly adjacent
to the other.

— __Examples__/Formalisms/Traffic/ has an example of this in the
Positionable class.

3 For the Next Assignments

The next assignments will all utilize AToMPM for various model transforma-
tions. Therefore:

¢ Spend time becoming familiar with AToMPM concepts and interface

o Report issues, annoyances, and suggestions to bentley.oakesQuantwerpen.
be and/or propose code changes at https://github.com/AToMPM/atompm.

e Think carefully about your solution, and spend extra time improving the
concrete syntax.

¢ Look at the AToMPM documentation for how to use transformations, and
if possible begin experimenting.

— The next assignment will use transformations to implement the op-
erational semantics of the production system.

Straight

Fixer }(—' Straight

fix

| Cube

P |—>| Straight l—)|AssembIer Join Inspectlon

link ‘c l destroy
Cylind 3 . -
Krlr?vaelr Straight |—>|Assembler

/?% S accept Stralght Receiver
trom| [EBUR Bl 68 8 O G626 O

‘f Schedule

Cube Cube i

@ EE Fixer01 p A0.7 @ Cubearr
F0.2 @ g 9
\Cu/bealT Cubaas% @ A0.1 Inco1 ‘
ns
o i
. -

f lind
inder Cyfinder o%o

=[5 a o

lassemb
Cylarr o Bob Reco1

Figure 1: An example production system and its model in AToMPM.

4 Report

There are a number of requirements for the report. Above all, the marker
must be able to read the report and have a clear understanding of all
aspects of the assignment, without having to investigate the model
files.

Specifically, the report must contain:

e A brief outline of how the abstract syntax, concrete syntax, and example
models meet the requirements of the assignment

— This may include metamodels, diagrams, (pseudo-)code, etc. as
needed to provide the essential details of the assignment.

e A discussion of any interesting decisions made.
o A discussion of possible improvements to the abstract/concrete syntax.
e A brief description of the constraints present in your languages.
e Three example production systems.
— Two valid, one invalid (doesn’t meet the constraints).
e For each production system, show:

— A figure of the production system within AToMPM.

— The results of constraint checking on the invalid production system,
and which constraint fails.

— These production systems should be in medias res (in the middle
of things). This means that there should be items on belts and at
machines, and operators at machines. This shows that all appropriate
links are modelled and given appropriate concrete syntax.

5 Useful Links and Tips

¢ AToMPM main page: https://atompm.github.io/
e Download and code: https://github.com/AToMPM/atompm

o Documentation: https://atompm.readthedocs.io/en/latest/

Acknowledgements

Based on an earlier assignment by Simon Van Mierlo.
Icon authors from www.flaticon.com:

¢ Cylinder - https://www.flaticon.com/authors/kiranshastry

e Cube - https://www.flaticon.com/authors/smashicons

o Belts, Machine, Inspector, Incinerator, Receiver - https://www.flaticon.
com/authors/freepik

o Arrival Machine - https://www.flaticon.com/authors/catalin-fertu

o Fixer - https://www.flaticon.com/authors/srip

