
Assignment 1
Production System Modelling in metaDepth

Bentley James Oakes

1 Practical Information
The goal of this assignment is to design a domain-specific modelling language
(formalism) and subsequently to model production systems (a factory) in that
language in the textual modelling tool metaDepth.

The different parts of this assignment:

1. Implement the abstract syntax of your language in metaDepth.

2. Enrich the abstract syntax with constraints (using EOL) so that you can
check that every model is well-formed.

3. Create some production system models that are representative for all the
features in your language. The requirements for two valid models are
specified below, and there should be a third invalid model to show that
your constraints detect invalid models.

4. Write operational semantics (using EOL) that simulate the production
system.

5. Write a report that includes a clear explanation of your complete solution
and the modelling choices you made.

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf, commented abstract
syntax and operational syntax models, and simulator) on Blackboard before
Thursday, October 8th, 23:59h. Contact Bentley Oakes (bentley.oakes@uantwerpen.be)
if you have any issues.

2 Requirements
This section lists the requirements of the production system domain-specific
language and the report. The language requirements are split into two sections:
one on abstract syntax, and one on operational semantics. Make sure to test
each requirement with test models!

1



2.1 Abstract Syntax
The abstract syntax of the DSL captures its syntax and static semantics. The
requirements for the abstract syntax are:

1. A production system consists of the infrastructure with conveyor belts
running between machines. Workers operate the machines while items
are transferred on the belts. Items are processed and are either assigned
by a quality check to be accepted, rejected, or fixed.

2. The belt network consists of a number of interconnected belt segments.
The language must support the following segments:

• Straight - A trivial belt segment which allows an item to move
straight. Has one incoming and one outgoing segment.

• Split - Allows an item to go straight, or to split off onto another
belt. Has one incoming segment and two outgoing segments.

• Join - Joins two segments. Has two incoming segments and one
outgoing segment.

• Machine - Similar to Straights, but can also be at the beginning or
end of a belt. Depending on type has zero or one incoming segments
and zero, one, or three outgoing segments, but is always connected
to at least one segment.

– Each Machine has a unique name, consisting of a single upper
case letter, followed by zero or more lower case letters, ending
with zero or more numbers.

3. Although this will not be allowed at run-time, the language should support
more than one item to be present on a belt segment at a time.

4. There are two types of Items in this production system: Cylinders and
Cubes. An Item must be on only exactly one segment.

5. There are a number of Machines which exist in this production system

• Arrival - The Arrival Machine produces either Cylinders or Cubes.
Items are produced when the Machine is operated.

• Assembly - The Assembly Machine is actually two linked Machines.
One for the Cylinders and one for the Cubes. These Machines are
different segments, and are linked by a bi-directional association. An
Assembly Machine handling Cubes must be linked to exactly one
Assembly Machine handling Cylinders (and the reverse of course).
The output of an Assembly Machine is an AssembledItem, which is
itself an Item.

• Inspection - The Inspection Machine inspects the Item (including
AssembledItem), and determines whether the Item is to be accepted,
fixed, or destroyed.

2



– An Inspection Machine is still a type of Segment, but it must
also have one output belt for the Items to fix, and one output
belt for the Items to destroy.

• Receiver - The Receiver Machine takes any incoming Items off the
belt, for further processing.

• Fixer - The Fixer Machine attempts to repair any defects in the
Item.

• Incinerator - The Incinerator destroys the Item on the belt.

6. Each of these Machines requires an Operator to operate. Operators have
a name1. Each Machine can have at most one Operator be present, and
the Operator must be present for the Machine to function.

7. These Operators also need a schedule, which will be defined in a second
domain-specific language. This is so that each operator can have a differ-
ent schedule in the production system. The requirements for this second
language are:

• A schedule is associated to an Operator by referring to the name of
the Operator. Each Operator must have a schedule, and a schedule
must have an Operator.

• The schedule of an Operator tells them which Machines to operate,
and for how many time steps. The Operator will start at the first
Machine in the list, and operate them in order until the end of the
list in which case the schedule will repeat. There must be at least
one step where a machine is operated in each schedule.

• Whenever the operator moves between two different machines (in-
cluding when the schedule is repeated), there must be a step (of
duration one) which represents the movement of the worker within
the physical space. During this movement step, that operator will
not operate any Machine.

2.2 Operational Semantics
In this part of the assignment, the semantics of the production system will be
modelled, including the Operators, Items, and Machines. The goal is for the
Operators to move between Machines and operate them, such that Items are
assembled, inspected, fixed, received, or destroyed.

The specific requirements are:

• The simulation is broken up into a number of discrete steps. In each step,
the Machines are operated if Items and Operators are present, the Oper-
ators are moved if needed, and then the Items are moved (concurrently).

1And hopes, dreams, fears, and rich social lives. But these qualities won’t be modelled
here, only their name.

3



Figure 1: An example production system.

• In the initial step, all Operators are placed at their start Machine.

• If an Operator is scheduled to move to an occupied Machine, they must
wait until the other Operator is finished.

• An Item is allowed to move to the next segment if no Item is present on
that Segment, and the Item is not in an Assembler waiting for the linked
Machine to obtain its Item.

• An Arrival cannot be operated if an Item is already on that Segment.

• In an Assembler when it operates, both Items are removed, and one is
replaced with an AssembledItem.

• At a Split, Cubes will take the straight direction, while Cylinders will take
the diverging direction.

• At a Join, one of the incoming Items is selected randomly to advance.

• At an Inspector, the chance of the Item being accepted (placed on the
accepted belt) is 70%. The chance of requiring fixing is 20%. The chance
of the Item requiring destruction is 10%.

• The simulation must produce a textual trace as in Figure 2.

• The simulation continues until some number of AssembledItems are ac-
cepted. Set this parameter such that the traces are long enough to show
interesting behaviour.

3 Report
There are a number of requirements for the report. Above all, the marker must
be able to read the report and have a clear understanding of all aspects of the
assignment, without having to investigate the model files.

Specifically, the report must contain:

4



• A brief outline of how the abstract syntax, operational syntax, and schedul-
ing models meet the requirements of the assignment, including any inter-
esting decisions made.

• A brief description of the constraints present in your languages.

• Three example production systems.

– Two valid, one invalid (doesn’t meet the constraints).

• For each production system, show:

– A small diagram (doesn’t need to be elaborate, but enough to un-
derstand the trace)

– The results of constraint checking on the invalid production system,
and which constraint fails.

– Interesting parts of the textual trace from the simulation, plus any
extra explanation required to clearly understand the traces.

4 Useful Links and Tips
• metaDepth main page: http://metadepth.org/

– http://metadepth.org/papers/TOOLS.pdf

– http://metadepth.org/Documentation.html

– http://metadepth.org/Examples.html

• Epsilion Object Language: https://www.eclipse.org/epsilon/doc/eol/

• Use an .mdc file to save time

– See slide 47 of https://metadepth.org/tutorial/tutorial.pdf

• Can create two separate models, then import one into the other

– See slide 94 of https://metadepth.org/tutorial/tutorial.pdf

• If assignments are failing with Internal error: the value X is not
a Y, first assign the variable to null before performing the assignment.
This is due to type checking.

• Use if (x.isDefined()) to check for null

• Use context ‘‘model name‘‘ to change which model the EOL is executed
in

Acknowledgements

Based on an earlier assignment by Simon Van Mierlo.

5



Start ProdSys
---=== ---=== Initial Setup === ---=== ---
Operator: ’Bob’ arrives at machine: Cubearr
Operator: ’Alice’ starts walking.
Operator: ’Ernie’ arrives at machine: Inspection
Operator: ’Daniel’ arrives at machine: Receiver
Operator: ’Charlie’ arrives at machine: Cylassemb
---=== ---=== Step 1 === ---=== ---
Machine: ’Cubearr’ produces a Cube
Operator: ’Daniel’ still working for 1 more time steps at machine: Receiver
Operator: ’Bob’ starts walking.
Operator: ’Alice’ arrives at machine: Cubeassemb
Operator: ’Ernie’ still working for 1 more time steps at machine: Inspection
Operator: ’Charlie’ still working for 3 more time steps at machine: Cylassemb
Item: ’MD_b232aef93f724def9e2eb4b65e816a54’ at: cube_arr
---=== ---=== Step 2 === ---=== ---
Operator: ’Daniel’ starts walking.
Operator: ’Bob’ arrives at machine: Cylarr
Operator: ’Alice’ still working for 3 more time steps at machine: Cubeassemb
Operator: ’Ernie’ starts walking.
Operator: ’Charlie’ still working for 2 more time steps at machine: Cylassemb
Item: ’MD_b232aef93f724def9e2eb4b65e816a54’ at: s1
---=== ---=== Step 3 === ---=== ---
Machine: ’Cylarr’ produces a Cylinder
Operator: ’Daniel’ arrives at machine: Incinerator
Operator: ’Bob’ starts walking.
Operator: ’Alice’ still working for 2 more time steps at machine: Cubeassemb
Operator: ’Ernie’ arrives at machine: Inspection
Operator: ’Charlie’ still working for 1 more time steps at machine: Cylassemb
Item: ’MD_b232aef93f724def9e2eb4b65e816a54’ at: cube_assemb
Item: ’MD_90be4be6ec104663864325e9ffcf78c6’ at: cyl_arr
etc. etc.

Figure 2: An example trace produced by my solution for the production system
in Figure 1. Feel free to have more or less information than this.

6


