
Generation of Functional Mock-up Units from Causal Block Diagrams

Bavo Vander Henst
University of Antwerp

Model Driven Engineering
Bavo.VanderHenst@student.uantwerpen.be

Abstract

The purpose of this paper is to investigate the Functional Mock-up Interface. We will do this by exploring a method
for translating Causal Block Diagrams, implemented in Python, to Functional Mockup Units. The process of doing
this will be explained in the paper to better understand the difficulties and advantages of the FMI standard.
This paper will not only explain the generation of FMU’s but will also look at the flattening and optimization of the
CBD’s before they are translated. By doing this we try to create a complete method for generating optimized FMU’s
from CBD’s.

Keywords: Causal Block Diagrams, Optimization, Functional Mockup Unit, Co-simulation

Introduction

Models are increasingly used within software engi-
neering to simulate the behavior of a system without
having to explicitly code them. Models are widely used
to prototype systems instead of explicitly code them,
this is logical because they are less costly to make
and more easily to adapt so we can try out different
settings. One of the major problems with models is
that they are made in a variety of different formalisms,
each with their own purpose. This makes it impossible
to exchange and use other models if they are made in
an other formalism. The Functional Mockup Interface
[1] tries to solve this problem by defining an interface
for model exchange and co-simulation. In this project
we will generate Functional Mockup Units based on
co-simulation. To do so we will start from a well known
formalism, Causal Block Diagrams, programmed in
python. We will go trough the steps needed to go from
the CBD implementation to the FMU.

We will start by investigating the Functional Mockup
Unit in section 1. In section 2 the starting point of the
project is explained. Section 3 will cover the flattening
of CBD’s, followed by the optimization step in section
4. In section 5 we will look at the generation of the
FMU. The results of our experiments are described in
section 6. section 7 concludes.

1. Functional Mockup Interface (FMI)

The FMI Standard consists of two main parts:

1. FMI for Model Exchange

2. FMI for Co-Simulation

The main idea of both interfaces is to create a standard
interface for files so that different formalisms can be ex-
changed using this interface. In the following we will
look at the two parts individually.

1.1. Model Exchange

The interface of model exchange consists of a set of
functions that can be called by the solver to query the in-
ternal state of the model. By making the FMU we create
a black box around the model which makes it possible to
keep the internal structure secret. Because of the inter-
face between the solver and the model we can replace
the model with a newer one without having to change
the solver. We can also exchange our model with some-
one else who uses an other formalism or solver.

Preprint submitted to Model Driven Engineering January 27, 2014



Figure 1: Visualization of the model exchange interface

1.2. Co-Simulation
The second interface, the co-simulation, is created to
couple two or more simulators with each other. This
can come in handy if we don’t want to compile multiple
models together in one, because we want, for example,
to try out different configurations. An other possibility
is that you don’t have access to the source code of some
models but only to the compiled versions. It is normal
for a company to give out models of their systems in
compiled form to protect their intellectual property.
Here the interface isn’t located between the model and
the solver, but between the solver and a master program.
This master program is responsible to synchronize all
the simulations and to pass data between them.

Figure 2: Visualization of the cosimulation interface

As we can see in the image, all the simulation
kernels (model + solver) are connected to a bus. The
master program as well is connected to the same bus.
Now we can create a co-simulation environment where
parts of the whole simulation can be swapped with new,
better models.

2. Starting point

We start the project with a Causal Block Diagram im-
plementation in Python. The python code gives a frame-
work to create our own CBD. This framework is imple-
mented in the file CBD.py and contains definitions for:

• Base block
from which all the other blocks are derived
• CBD block

which represents a CBD and can also be a hierar-
chical block in an other CBD
• Linear blocks

(sum, product, negator, inverter,...)
• Delay block

We add input and output blocks which are used as in-
and outports for a hierarchical CBD block and adapt
the function that connects the blocks. If the function is
called with a hierarchical CBD block as argument, it
will search in that CBD for an input/output block with
a matching port name. The function will connect to that
input/output block instead of the CBD itself. This way
we can connect to input/output blocks form inside a
CBD, but also from the outside which makes it possible
for the implementation to fully express hierarchical
CBD structures.

The second file that we already have is the CBD-
Simulator class which implements a simulator for our
python CBD model. The most important parts for us
are the dependency graph algorithms and the derived
sorted list of components. These parts, which are also
used in the simulator, can be used to generate an order
in which CBD blocks must be computed so that the
input of the block is computed before the block itself.

3. Flattening

The first step in generating an FMU is to flatten the
hierarchical CBD. By flattening the CBD we solve the
difficulties that come with the hierarchical structure.
This helps to make optimization and generation of the
FMU easier.

2



We create the function flatten in CBD.py which im-
plements the flattening algorithm. The steps of this
algorithm will be made clear with a small example.
Consider the flowing hierarchical CBD

Figure 3: Hierarchical CBD

We have 2 CBD’s: the first one (A) consists of two con-
stants connected with another CBD (B). This one has 2
inports and one outport. The blocks inside the second
CBD calculate the following formula: IN 1 − IN 2 by
changing the sign of IN 1 and adding the result to IN 2.

The first step of our flattening algorithm is to
copy all the internal blocks, of every CBD block, to the
main CBD and than delete the hierarchical CBD block.
All of the links between the blocks can be preserved
because of the use of input/output blocks which allow
us to connect blocks trough hierarchical levels. After
this step one main CBD remains without hierarchy but
still with input/output blocks.

Figure 4: CBD with hierarchy removed

Note that the names of the internal blocks have slightly
changed: they are prefixed with the name of the
hierarchical block to make sure traceability remains
possible.

The second step of our algorithm is to removing
the redundant in- and out blocks. To do this we first
remove all the connections between the input/output
block and other blocks and make new connections
between the input and their output blocks. This way all
the connections stay the same but the in- and out blocks
are removed from in between.

Figure 5: CBD without in and out blocks

Now we have a flattened CBD which can be used in the
next steps.

3



4. Optimize

To make our FMU perform better we will optimize the
CBD before the FMU is generated. There are multiple
ways on how to optimize a CBD. Here, we will list a
few of them.

4.1. Collapse blocks
The idea of this optimization step is to collapse a row
of adder or product blocks together to one block. Be-
cause adders and products can have an arbitrarily num-
ber of inputs we can copy all the inputs of one adder,
remove the adder and add those inputs to the inputs of
the adder’s successor. This isn’t a real optimization, be-
cause it doesn’t help removing any calculation, but it
makes the CBD more memory efficient and it will make
constant folding later on, more effective.

Figure 6: Example of collapse optimization

4.2. Constant folding
A second optimization is constant folding, where we
will try to find lineair blocks with constants as input.
These blocks can then be replaced by the computed con-
stant, resulting in less redundant calculation during ev-
ery time step.

This can also be a partial constant folding as it is possi-
ble that, for example, an adder has 2 constants and one
non constant. The adder won’t be replaced by a con-
stant but the 2 constants can be summed, and the result
will be added as a new constant block to replace the 2
constant blocks. This way the adder has less input that
it must sum.

4.3. Special cases
There are still a few special cases of constant folding
that can help speed up the CBD.

• A constant 0 as input for an adder can be discarded
because it doesn’t affect the outcome of the adder.
• A constant 0 as input for a product will make the

whole product 0, so we can replace the product by
a constant 0.
• A constant 1 as input for a product can be discarded

because it doesn’t affect the outcome either.

All these methods help reducing the CBD and removing
redundant calculations.
All these optimizations use the dependency graph to
optimize in the same order as the blocks are calculated.
If we don’t do this, some blocks will be optimized be-
fore their inputs are, which can affect the optimization
process.

5. Genereate Functional Mockup Unit (FMU)

To create an FMU we need two files, as explained in [1],
a C-file and an XML-file. We will discuss both files sep-
arately, together with their generation from our CBD.
We start with the XML-File

5.1. XML-File
The purpose of the XML-file is to give information
about the FMU. The file contains 2 major parts. The
first one is the model description which contains the
information about the FMU like the version used, the
name of the FMU, GUID, ... The second part is a list of
model variables, which are the ones you make public
for the user of this FMU. These model variables contain
some extra information like their reference, type, ... If
we are using co-simulation, a third part is added, the
implementation details about the solver that is used.

The generation of the XML-file is fairly straight
forward. The model description is filled in with the
information of the CBD. A random GUID is also gen-
erated and filled in. The next section in the XML-file

4



contains the model variables, for those we loop over
all our blocks and for every block we create a scalar
variable. These variables are filled with the right name,
value reference and type.

We use a SDK [2] to help us build our FMU’s to
ease the work needed to be done. One of the main
advantages of the SDK is that we don’t have to create
separate files for co-simulation and model exchange.
For co-simulation the SDK will automatically append
the extra implementation details needed.

5.2. C-File
The C-file must contain a set of functions that can be
used to query the state of the model/simulator and to
communicate with the simulator.
The SDK is a big help here: with the SDK comes
C-code which implements most of these functions for
us. The only thing we have to do is to create a set
of functions in our own C-file which will include the
C-file from the SDK.
In our own C-file we must maintain the internal
information of the converted CBD together with the
calculations that are needed to be done every time step.
The file starts with some defines required by the SDK
like the number of reals and our GUID.

The next part of the C-code is the definition of
the reference value of all our CBD blocks. By doing
this we make the code more readable and neat without
affecting the speed of our program. Note that these
reference values must be the same as in the XML-file.

To hold the state of our FMU we create an array
with enough space to save the current signal output of
every block. Although a matrix can hold the signal
output for every time step we have chosen for an array
for two reasons. The first reason is space, the matrix
takes a lot more space which will lead to a slower
calculation. The second reason is that, at compile time,
there is no way in knowing how many time steps we
will have to compute and we have no means to create a
sufficiently large matrix. It is however no problem if we
want to collect data from every time step, because the
master algorithm can query the FMU after every time
step and save that signal data.

The rest of our file contains our functions that
will be used by the SDK later. The first function is the
setStartValues(),which is called on startup of the FMU
to init all the variables. To fill in this function we run
our python CBD for one time step so we can use the

calculated signals. In the setStartValues() function we
fill our array with the signal output of the first time
step for every corresponding block. It is needed to
init the array with our CBD’s first step because the
FMU standard see the initialization as the first time step.

The second function is the getReal function, this
receives a value reference and returns the right signal
value from our array. This function is pretty straightfor-
ward and doesn’t need any more explanation.

The last important function is the computeVari-
ables which will be called by the fmiDoStep of the
SDK. In this function we update all the variables to the
value of the next time step. To do this we loop over all
the blocks of our python CBD starting with the delay
blocks. We need to start with these blocks because they
need to contain the value of the previous time step.
Because we only remember one time step we must first
copy the info of the previous time step to our delay
block before that value is overwritten with the next
time step. After the delay blocks the formulas of all
the other blocks are printed to the C-file. This happens
in the order of the sorted list of components so that the
input of a block is evaluated before the block itself.

There is one exception to this process, namely the
strong components. The internal blocks can’t evaluated
one by one because they depend on themselves in a
circular way. Therefore we must calculate the results of
all the blocks together, we do this by solving a system
of lineair equations. For every strong component we
create two matrices to represent our lineair equations,
fill them with the signal values from the current time
step and call a lineair solver to solve the system. When
the lineair equations have been solved, we have the new
signal values and we can continue with our function.

Note that because we have an array and no ma-
trix, their is no need to re-evaluate constant blocks
which gives us a speed up.

6. Experiment

To evaluate the conversion we propose in this paper,
we will investigate a real-life CBD, implementing the
pitch control of an F14 fighter. This CBD is translated
from a R©MathWorks R©Simulink implementation to
our own CBD format, and then transformed to an FMU.
The translation from MathWorks to CBD is outside the
scope of this paper.

5



To ensure the correctness of the conversion we
compare our results with those of Simulink. The
calculated residual sum of squares equals 5, 40823E−20,
which is acceptably small.

To investigate the effectiveness of our optimiza-
tion algorithms, we compare the mean computation
times of two CBD’s: one without optimization and one
with optimization. We will do this for the python CBD
and for the CBD converted to an FMU. The results can
be found in the following table.

F14 Model Mean computation time (s)

Python
Not optimized 9.96355
Optimized 8.570786

FMU
Not optimized 0.012619
Optimized 0.009318

The optimization gives us a speedup of almost 16% for
python and even 35% for FMU because there are less
blocks to be computed, more specifically: there are 140
blocks in the F14 model, but after optimization there
are only 116 left of them.

If we look at the difference in computation time
between the FMU in comparison with the python im-
plementation, we can see that the FMU is substantially
faster. This is mainly caused by the difference in pro-
gram language. The programming language of an FMU
is C, which is faster than python in doing mathematical
calculations. Moreover, the python implementation
was not created with speed in mind whereas the FMU
framework and our own code were.

7. conclusion

In this paper we have tried to purpose a method of form-
ing Functional Mockup Units from Causal Block Dia-
grams, not only focusing on the translation itself, but
also on the preparation and optimization of the CBD.
As we have seen in our experiment, the conversion to
an FMU caused a substantial speedup compared to the
python CBD. Also the optimization helped reducing the
computation time. We can conclude that the conversion
from CBD’s to an FMU is possible and that the FMU
can be a good choice to be used instead of the CBD in a
co-simulation environment.

References
[1] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss,

H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neid-

hold, et al., The functional mockup interface for tool independent
exchange of simulation models, in: Modelica’2011 Conference,
March, 2011, pp. 20–22.

[2] QTronic, https://www.qtronic.de/en/fmusdk.html, fmu sdk.

6


